Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Zero-loss Energy harvesting Using nanowire solar cells in Space

Project description

Sustainable and more effective energy harvesting from space

In-orbit solar energy collection is hindered by the limitations of current technology, which struggles with low efficiency and radiation resistance. Funded by the European Innovation Council, the ZEUS project aims to overcome these challenges by developing innovative nanowire solar cells with up to 47 % efficiency. Using triple-junction cells made from III-V semiconductor materials, ZEUS will enhance cell performance through advanced surface passivation and scalable peel-off technology for lightweight panels. The project also includes wireless power transmission systems based on III-V nanowire MOSFETs to transmit the collected power to in-space recipients. Overall, project work will improve space energy generation. Furthermore, a life-cycle analysis will quantify the boost in environmental sustainability.

Objective

The ZEUS project is focused on advancing the development of innovative, highly efficient and radiation-resistant nanowire solar cells designed for in-orbit solar energy collection. While current space-tested nanowire solar cells offer around 15% efficiency using single-band gap cells, ZEUS aims to significantly enhance this efficiency, potentially reaching up to 47%, by employing triple junction nanowire cells with a carefully selected set of III-V semiconductor materials. To this end, this interdisciplinary project will also optimize nanowire surface passivation schemes to improve voltage and current matching of the solar cell. This project aims to achieve scalability through a peel-off technology that transfers solar cells onto lightweight, flexible substrates (creating a thin film), enabling the creation of large deployable photovoltaic panels.
Key objectives include:
1. Enhancing the efficiency of radiation-resistant nanowire solar cells.
2. Scale up wafer size to 100mm^2 and develop modules at a size of 1x1 cm^2.
3. Improving power conversion efficiency in breakthrough wireless power transmission systems based on III-V nanowire MOSFETs.
4. Reducing weight and material usage through nanowire peeling and wafer re-use.
Additionally, the project underscores its commitment to environmental sustainability by focusing on two key aspects: decarbonization and the efficient use of critical raw materials. By means of a life cycle assessment of nanowire solar cells, ZEUS seeks to demonstrate the environmental benefits and commercial potential particularly for space energy generation.
This research has far-reaching applications, including integrating nanowire-based devices into stretchable polymer films (offering flexibility in solar cells, electronics, detectors, and LEDs), self-powered nodes for IoT or cryogenic electronics.
An industrial advisor from Azur Space Solar will help the project with scalability and exploitation strategy.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-EIC - HORIZON EIC Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) HORIZON-EIC-2023-PATHFINDERCHALLENGES-01

See all projects funded under this call

Coordinator

LUNDS UNIVERSITET
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 836 130,00
Address
Paradisgatan 5c
22100 Lund
Sweden

See on map

Region
Södra Sverige Sydsverige Skåne län
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 836 130,00

Participants (5)

My booklet 0 0