Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Solar for Ice to Thrust

Project description

Advanced propulsion system holds promise for circular space economy

As humanity pushes the boundaries of space exploration, the need for sustainable and efficient technologies becomes more critical. The EIC-funded S4I2T project will seek to develop a solar electric water propulsion system. This system will leverage water as a propellant for autonomous spacecraft docking and refuelling, thus promoting economic and environmental sustainability. Key technological innovations include solar-electric water electrolysis propulsion, autonomous proximity operations and in-space water extraction from celestial bodies. These technologies promise a self-sustaining circular space economy powered by solar energy. Through these breakthroughs, S4I2T seeks to position Europe at the forefront of sustainable space mobility, paving the way for long-term, Earth-independent operations and in-space manufacturing.

Objective

The S4I2T project seeks to develop a cost-effective and environmentally friendly solar electric water propulsion system. It aims to use water as a propellant to enable autonomous spacecraft docking and propellant refilling, promoting economic and environmental sustainability and facilitating in-orbit servicing, robotics, and in-space manufacturing. Furthermore, the project explores in-space water extraction and utilization from celestial bodies, contributing to a self-sustaining circular space economy based on solar energy harvesting.
The three technological elements at the project's core are:
1. Solar-Electric Water Electrolysis Propulsion: Water is used as a propellant and decomposed into gaseous oxygen and hydrogen, outperforming traditional chemical propulsion systems. Water's non-toxicity, versatility, and availability make it a cost-effective choice. It also utilizes solar energy for propulsion.
2. Autonomous Proximity/Docking Operations and Propellant Refilling: Water simplifies in-orbit refueling, reducing launch mass and extending satellite lifetimes. This supports in-orbit servicing and assembly, enhancing the impact of solar energy harvesting.
3. In-Space Water Extraction and Utilization: Water extraction from celestial bodies combined with the other technologies creates a self-sustainable space mobility infrastructure, offering long-term, Earth-independent operation.
The project aims to achieve several breakthroughs in developing a novel solar-powered propulsion system, addressing technological challenges and bottlenecks. It includes the development and lab demonstration of innovative components for a Solar Electric Water Electrolysis Propulsion System, autonomous proximity/docking algorithms, and end-to-end In-Space Resource Utilization (ISRU) validation.
Ultimately, the S4I2T project strives to position Europe as a leader in solar-energy-powered space mobility, fostering a sustainable and self-sustaining space economy.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-EIC - HORIZON EIC Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) HORIZON-EIC-2023-PATHFINDERCHALLENGES-01

See all projects funded under this call

Coordinator

TECHNISCHE UNIVERSITAET MUENCHEN
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 2 222 090,00
Address
Arcisstrasse 21
80333 Muenchen
Germany

See on map

Region
Bayern Oberbayern München, Kreisfreie Stadt
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 2 222 090,00

Participants (4)

My booklet 0 0