Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

FLEXIBLE LIGHTWEIGHT MULTI-JUNCTION SOLAR CELLS AND MODULES WITH ENHANCED PERFORMANCE FOR EFFICIENT LIGHT HARVESTING IN OUTER SPACE

Project description

Perovskite solar cells holding promise for solar space

The surge in satellite launches and in-orbit activities calls for breakthroughs in cost-effective solar energy harvesting technologies for space deployment. The EU-funded JUMP INTO SPACE project aims to create high-efficiency, lightweight, flexible solar cells using advanced all-perovskite tandem solar cells. These new solar cells will help achieve 30 % efficiency and exceed current technological limits. Researchers will seek to create a unique photonic substrate that enhances light capture, provides protection from space conditions, and is stable against radiation and atomic oxygen. These solar cells will be tested for high power output and stability in in low-orbit conditions. The technology promises to transform space solar power, supporting various spacecraft and potentially providing continuous energy to Earth from space.

Objective

The exponential growth of satellite launches and, in general, of in-orbit activities calls for technological breakthroughs in cost-effective solar energy harvesting technologies for Space deployment.
JUMP INTO SPACE envisions a high-efficient, lightweight and flexible, stable and sustainable alternative to currently available photovoltaic systems for in-space energy harvesting, via an unexplored synergetic coupling of groundbreaking concepts.
All-perovskite tandem solar cells, based on advanced contact materials and finely tuned perovskite absorbers, will be developed to ensure high efficiency (30% at AM0 targeted here, but capable of overcoming the single-junction Shockley–Queisser limit). The devices will be endowed with a pioneering, lightweight and flexible, multi-purpose photonic substrate, designed and optimized to embody the dual function of environment shielding and light management boost, while being remarkably stable against high-energy radiation and atomic oxygen erosion. The optimized all-perovskite tandem solar cells will be manufactured on the multi-purpose photonic substrates and thoroughly tested to deliver unprecedentedly high specific power and prove their stability for Space operation in low-orbit conditions.
JUMP INTO SPACE all-perovskite tandem cells on innovative multi-purpose photonic flexible substrates will be game-changers for the next generation of Space Solar Power, e.g. allowing lightweight stowing in rollable platforms, for powering novel propulsion apparatus for in-space mobility and a wide range of spacecrafts and applications e.g. systems for active debris removal, micro- and cube-sats. They could also be deployed in Space-Based Solar Power plants and, through novel, properly designed transmission technologies, power various in-space applications, such as Moon or Mars human bases, or even provide Earth with continuous energy from space.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-EIC - HORIZON EIC Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) HORIZON-EIC-2023-PATHFINDERCHALLENGES-01

See all projects funded under this call

Coordinator

UNIVERSITA DEGLI STUDI DI ROMA TOR VERGATA
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 552 268,75
Address
VIA CRACOVIA 50
00133 Roma
Italy

See on map

Region
Centro (IT) Lazio Roma
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 552 268,75

Participants (7)

My booklet 0 0