Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Diving into Data Diversity for Fair and Robust Natural Language Processing

Description du projet

Explorer l’équité des modèles de traitement du langage naturel

Le traitement du langage naturel (TLN) est essentiel pour créer une IA capable d’apprendre, de comprendre et de communiquer dans des langues humaines. Cependant, le TLN est confronté à des difficultés pour garantir l’équité et la robustesse de ses modèles, souvent en raison de l’importance accordée à la taille des ensembles de données plutôt qu’à leur qualité. Le projet DataDivers, financé par le CER, vise à résoudre ce problème en développant un cadre révolutionnaire pour mesurer la diversité des données dans les ensembles de données du TLN. Le projet étudiera l’impact de la diversité des données sur le comportement des modèles de TLN et concevra des solutions innovantes pour tirer parti de la diversité afin de créer des modèles plus robustes et plus équitables. Grâce à ces efforts, DataDivers transformera la manière dont le TLN aborde la diversité des données, ce qui permettra d’améliorer l’équité et les performances de l’IA.

Objectif

Despite great progress in the field of Natural Language Processing (NLP), the field is still struggling to ensure the robustness and fairness of models. So far, NLP has prioritized data size over data quality. Yet there is growing evidence suggesting that the diversity of data, a key dimension of data quality, is crucial for fair and robust NLP models. Many researchers are therefore trying to create more diverse datasets, but there is no clear path for them to follow. Even the fundamental question “How can we measure the diversity of a dataset?” is currently wide open. It is both surprising and concerning that we still lack the tools and theoretical insights to understand, improve, and leverage data diversity in NLP.

DataDivers will 1) develop the first ever framework to measure data diversity in NLP datasets; 2) investigate how data diversity impacts NLP model behavior; and 3) develop novel approaches that harness data diversity for fairer and more robust NLP models. I operationally define the diversity of a text collection as the variability of texts along specific dimensions (e.g. semantic, lexical, and sociolinguistic). Sociolinguistic diversity in particular, is an overlooked but crucial dimension, which I am committed to addressing.

DataDivers will break new ground by taking a comprehensive view of data diversity, which is urgently needed for robust and fair NLP. Its approach will be both theoretical and empirical. It will combine insights from disciplines that have developed methodologies to quantify data diversity with rigorous empirical experimentation. DataDivers will take a unique view on data diversity: measuring it at the dataset level, and across contexts for individual features. Finally, DataDivers will use its framework to develop diversity-informed data collection and model training methods. DataDivers’ results will impact the full NLP development pipeline—from data collection to evaluation—and open up a new, urgently needed, area of research.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Mots‑clés

Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

HORIZON-ERC - HORIZON ERC Grants

Voir tous les projets financés dans le cadre de ce programme de financement

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

(s’ouvre dans une nouvelle fenêtre) ERC-2024-STG

Voir tous les projets financés au titre de cet appel

Institution d’accueil

UNIVERSITEIT UTRECHT
Contribution nette de l'UE

La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.

€ 1 500 000,00
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

€ 1 500 000,00

Bénéficiaires (1)

Mon livret 0 0