Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Massive-binary EvoluTion Across the metallicity Ladder

Project description

Understanding massive stars and black holes across metallicity levels

Do massive stars explode into supernovae when collapsing into black holes? Significant gaps remain in our understanding of these stars. This is due to the rarity of massive binaries and a lack of monitoring data. The ERC-funded METAL project will use extensive spectroscopic and interferometric data from the Very Large Telescope and the Hubble Space Telescope to study thousands of massive stars in our Galaxy and the Magellanic Clouds. The project will enhance our understanding of massive stars and black holes across different metallicity levels, provide better statistics on massive stars, increase the sample of dormant black-hole binaries, and refine models for massive star evolution and core-collapse supernovae.

Objective

Do massive stars undergo supernova explosions when collapsing into black holes? What mechanisms drove the Cosmos into an epoch of reionization? How was dust produced in the Early Universe? Scarcely any field of astronomy remains unaffected by massive stars: stars born with more than eight solar masses. Yet, studies in the Local Universe reveal substantial gaps in our understanding of massive stars related to mass loss, internal mixing, core-collapse, and stellar interactions. Uncertainties worsen at the low-metallicity conditions of the Early Universe. The primary reason for this: a severe lack of empirical constraints on massive binaries across the metallicity axis, driven by the rarity of massive stars and the shortage of adequate monitoring campaigns to study them.
METAL leverages hundreds of hours worth of novel spectroscopic and interferometric data collected as PI using observatories such as the Very Large Telescope (VLT) and the Hubble Space Telescope, including a VLT Large Programme (116hr; 2023 - 2025). These campaigns monitor thousands of massive stars in our Galaxy and the Magellanic Clouds. Targeting unevolved OB-type stars, evolved Wolf-Rayet and Oe/Be stars, and elusive black holes, METAL will elucidate the initial conditions, evolution, and ultimate fates of massive stars at three metallicity anchors. Groundbreaking outcomes include (1) unprecedented statistics on the multiplicity, initial mass function, and structure of massive stars at low metallicity, (2) a tenfold increase in the sample of dormant black-hole binaries and the first such sample at low metallicity, and (3) a revised mass-loss prescription and a comprehensive binary characterisation of evolved massive stars at two metallicity anchors. The deliverables will be the defining calibrators for next-generation evolution models of massive stars, ushering in advancements in models of not only stellar evolution, but galaxy evolution, unresolved stellar populations, and core-collapse supernova.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-ERC - HORIZON ERC Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2024-STG

See all projects funded under this call

Host institution

TEL AVIV UNIVERSITY
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 500 000,00
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 500 000,00

Beneficiaries (1)

My booklet 0 0