Project description
Understanding massive stars and black holes across metallicity levels
Do massive stars explode into supernovae when collapsing into black holes? Significant gaps remain in our understanding of these stars. This is due to the rarity of massive binaries and a lack of monitoring data. The ERC-funded METAL project will use extensive spectroscopic and interferometric data from the Very Large Telescope and the Hubble Space Telescope to study thousands of massive stars in our Galaxy and the Magellanic Clouds. The project will enhance our understanding of massive stars and black holes across different metallicity levels, provide better statistics on massive stars, increase the sample of dormant black-hole binaries, and refine models for massive star evolution and core-collapse supernovae.
Objective
Do massive stars undergo supernova explosions when collapsing into black holes? What mechanisms drove the Cosmos into an epoch of reionization? How was dust produced in the Early Universe? Scarcely any field of astronomy remains unaffected by massive stars: stars born with more than eight solar masses. Yet, studies in the Local Universe reveal substantial gaps in our understanding of massive stars related to mass loss, internal mixing, core-collapse, and stellar interactions. Uncertainties worsen at the low-metallicity conditions of the Early Universe. The primary reason for this: a severe lack of empirical constraints on massive binaries across the metallicity axis, driven by the rarity of massive stars and the shortage of adequate monitoring campaigns to study them.
METAL leverages hundreds of hours worth of novel spectroscopic and interferometric data collected as PI using observatories such as the Very Large Telescope (VLT) and the Hubble Space Telescope, including a VLT Large Programme (116hr; 2023 - 2025). These campaigns monitor thousands of massive stars in our Galaxy and the Magellanic Clouds. Targeting unevolved OB-type stars, evolved Wolf-Rayet and Oe/Be stars, and elusive black holes, METAL will elucidate the initial conditions, evolution, and ultimate fates of massive stars at three metallicity anchors. Groundbreaking outcomes include (1) unprecedented statistics on the multiplicity, initial mass function, and structure of massive stars at low metallicity, (2) a tenfold increase in the sample of dormant black-hole binaries and the first such sample at low metallicity, and (3) a revised mass-loss prescription and a comprehensive binary characterisation of evolved massive stars at two metallicity anchors. The deliverables will be the defining calibrators for next-generation evolution models of massive stars, ushering in advancements in models of not only stellar evolution, but galaxy evolution, unresolved stellar populations, and core-collapse supernova.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
You need to log in or register to use this function
Keywords
Programme(s)
- HORIZON.1.1 - European Research Council (ERC) Main Programme
Topic(s)
Funding Scheme
HORIZON-ERC - HORIZON ERC GrantsHost institution
69978 Tel Aviv
Israel