Project description
Genome mining algorithms for non-enzymatic transformations in non-canonical alkaloid biosynthesis
Over half of today’s pharmaceuticals are derived or based on natural products (NPs). Theoretically, enzymes in biosynthetic gene clusters (BGCs) account for transforming NP scaffolds during bacterial biosynthesis. Although advanced genome mining algorithms identify canonical NP BGCs, non-canonical BGCs escape detection. The ERC-funded ComBiNE project has discovered alkaloids that sustain non-enzymatic transformations, attributed to spontaneous reactions in bacteria. Therefore, the project aims to establish novel genome mining algorithms to identify such alkaloid BGCs. It will develop a model system to study the level of compartmentalisation needed to accommodate spontaneous reactions. Research findings will be used to engineer NP and primary metabolic pathways for the non-enzymatic fusion of custom-made NPs or primary metabolites with complementary reactivity.
Objective
Nature is a remarkable pharmaceutical chemist. More than 50% of approved drugs are natural products (NPs) or have drawn inspiration from them. According to the central dogma of bacterial NP biosynthesis all transformations responsible for the formation and modification of a NP scaffold are carried out by enzymes encoded in a biosynthetic gene cluster (BGC).
Sophisticated genome mining algorithms have been developed to identify NP BGCs in microbial genome sequences. These algorithms excel in recognizing canonical BGCs. Non-canonical BGCs associated with NPs that are not biosynthesized following textbook biosynthetic knowledge evade detection by state-of-the-art genome mining algorithms.
We have identified alkaloids that undergo non-enzymatic transformations, thus defying the central dogma of NP biosynthesis. Bacteria likely employ specialized micro-compartments to facilitate these spontaneous reactions.
The ComBiNE team will develop machine learning-based genome mining algorithms to systematically identify and characterize alkaloid BGCs that currently elude detection. These non-canonical pathways biosynthesize alkaloids independent of the ribosome and non-ribosomal peptide synthetases. We will focus on alkaloids that undergo non-enzymatic transformations in bacterial micro-compartments. We will establish a model system to study the level of compartmentalization necessary to facilitate spontaneous reactions. Insights gained from these studies will be used to engineer NP and primary metabolic pathways for the non-enzymatic fusion of tailor-made NPs or primary metabolites with complementary reactivity.
Spontaneous reactions in bacterial micro-compartments can be harnessed for the fusion of two NPs with different targets to create bispecific chimeras to combat drug resistance or to fuse bioactive and homing components to mitigate off-target effects. The proposed research will inspire the development of biomimetic syntheses and expand NP chemical and biosynthetic space.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
This project's classification has been human-validated.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
This project's classification has been human-validated.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2024-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
60323 FRANKFURT AM MAIN
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.