Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Terahertz Integrated Biosensing from molecular, vesicular to the cellular and tissue level – TeraIBs

Project description

Advancing Biomedical Diagnostics with THz Technology

Biomolecules play crucial roles in health and disease and detecting them accurately is key to diagnostics. Many of these molecules resonate in the terahertz (THz) frequency range, offering opportunities for biomedical applications. However, existing technologies are often costly, complex, and lack sensitivity. Developing reliable tools to harness THz radiation for diagnosis remains a major challenge. Supported by the Marie Skłodowska-Curie Actions programme, the TeraIBs project aims to tackle this by creating advanced, cost-effective THz biosensors. A team of young researchers is developing technologies to detect biomolecules, viruses, and organ-level processes. Their work will lead to groundbreaking tools like modular THz sensors and organ-on-chip models, revolutionising biomedical diagnostics and paving the way for healthcare solutions.

Objective

THz biosensorics is a strongly growing field of research, as many biomolecules and biomolecular complexes exhibit application-relevant intramolecular and intermolecular resonances in this frequency range, with great potential for a wide range of biomedical and diagnostic applications. The TeralBs project aims to develop a radically new technology based on THz radiation for biomedical detection and diagnosis, based on a team of Doctoral Candidates (DCs) with the necessary in-depth background in devices and systems, spectroscopic techniques and biomedical measurement knowledge using THz radiation. To this end, all DCs projects are built around three major technological challenges of THz technology for biomedical applications: the development of cost-effective, sensitive, integrated THz technologies; the exploitation of the high specificity multi-analyte capabilities of THz; and the development of flexible and reliable THz analytical instrumentation and robust information extraction. The DCs projects configure a research programme structured in three research lines, which guide all technological developments in the project: RL1 on biomolecules, RL2 on vesicles and viruses, and RL3 on organ-on-chip sensing. At the end of the project, all the technological developments will be brought together in three demonstrators: a modular all-electronic system for the read-out of metamaterial-based THz biosensors, a fully integrated photonic THz sensor for biomedical applications, and an organ-on-chip model that will be used to validate the different THz sensors and technologies developed in the project in a biomedical-relevant scenario. The multidisciplinary knowledge gained by the DCs will enable them to explore new concepts in the broad field of future biomedical applications, equipped with an attractive set of transferable skills relevant to innovation, long-term employability, and leadership in the field of biomedical applications and THz technologies.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-TMA-MSCA-DN - HORIZON TMA MSCA Doctoral Networks

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) HORIZON-MSCA-2023-DN-01

See all projects funded under this call

Coordinator

TECHNISCHE UNIVERSITEIT EINDHOVEN
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 548 740,80
Address
GROENE LOPER 3
5612 AE Eindhoven
Netherlands

See on map

Region
Zuid-Nederland Noord-Brabant Zuidoost-Noord-Brabant
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (8)

Partners (6)

My booklet 0 0