Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Reinventing Multiterminal Coding for Intelligent Machines

Description du projet

Partage intelligent d’informations pour les machines autonomes coopératives

L’essor des capteurs avancés et de l’apprentissage profond a amélioré la perception des machines. Cependant, le flux massif de données à haute dimension, telles que les vidéos et les nuages de points dynamiques, pousse les technologies actuelles de stockage et de communication dans leur retranchement. Cette surcharge empêche les machines de collaborer efficacement, une étape essentielle vers une autonomie sûre et de haut niveau. Les méthodes actuelles de perception coopérative reposent uniquement sur des modèles basés sur des données, nécessitant de vastes ensembles de données d’entraînement et des ressources informatiques, tout en manquant d’interprétabilité et de fondements théoriques. Le projet IONIAN, financé par le CER, associe le codage traditionnel des sources multiterminales et le traitement des signaux à une intelligence artificielle moderne interprétable et explicable. Son objectif est d’améliorer la compression des données et la communication pour les machines intelligentes. Cela permettra aux systèmes autonomes, qu’il s’agisse de véhicules, de drones ou de robots, de percevoir leur environnement en toute sécurité.

Objectif

Advancements in sensors and deep learning have elevated the perception capacity of machines, bringing mid-level autonomy within reach. However, the abundance of high-dimensional data, including video and dynamic point cloud streams, strains current storage and communication technologies to their limits and curtails the ability of machines to collaboratively perceive the environment, a critical factor for achieving safety and the ambitious goal of high-level autonomy. State-of-the-art cooperative perception methods are based purely on a data-driven approach, requiring massive training data and computational resources, and lacking interpretability, explainability, and a solid theoretical foundation.
This proposal puts forth a groundbreaking multiterminal coding paradigm for intelligent machines enabling data compression and communication systems that break the current limits of the predictive coding archetype. It builds a unique concept that unifies traditional distributed source coding and signal processing domain knowledge with modern deep learning. First, it leverages machine learning to solve long-standing problems in multiterminal coding theory and devise code constructions achieving the fundamental limits, thereby establishing a theoretical framework that defines the amount of information required to be sent per agent to solve the cooperative perception task. Second, it leverages domain knowledge to drive the design of interpretable and data- and parameter-efficient machine learning models for cooperative perception. Third, it reinforces this interplay by pioneering explanations that enforce and assess the interpretability of the designed models. IONIAN will have a profound impact on the way intelligent machines, including ground and aerial vehicles, and mobile robots, compress and communicate multi-sensory data to collaboratively perceive the environment for autonomous safe navigation, ultimately leading to trustworthy operation and acceptance of such systems.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
La classification de ce projet a été validée par l'équipe qui en a la charge.

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

HORIZON-ERC - HORIZON ERC Grants

Voir tous les projets financés dans le cadre de ce programme de financement

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

(s’ouvre dans une nouvelle fenêtre) ERC-2024-COG

Voir tous les projets financés au titre de cet appel

Institution d’accueil

VRIJE UNIVERSITEIT BRUSSEL
Contribution nette de l'UE

La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.

€ 1 999 403,75
Adresse
PLEINLAAN 2
1050 BRUSSEL
Belgique

Voir sur la carte

Région
Région de Bruxelles-Capitale/Brussels Hoofdstedelijk Gewest Région de Bruxelles-Capitale/ Brussels Hoofdstedelijk Gewest Arr. de Bruxelles-Capitale/Arr. Brussel-Hoofdstad
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

€ 1 999 403,75

Bénéficiaires (1)

Mon livret 0 0