Descripción del proyecto
El aprendizaje profundo resuelve los misterios del universo
La cosmología moderna se enfrenta a importantes retos, especialmente en lo que respecta al misterioso sector oscuro y a discrepancias como las mediciones contradictorias de la constante de Hubble. Dichas incoherencias dejan al descubierto lagunas en nuestra comprensión del universo y sugieren la necesidad de una nueva física más allá del modelo actual. Por ejemplo, las mediciones locales de la constante de Hubble difieren notablemente de las derivadas de los primeros datos del fondo cósmico de microondas. Las tensiones complican nuestra comprensión de la expansión y la estructura cósmicas. En este sentido, el proyecto COSMOMALTA, financiado con fondos europeos, pretende desarrollar un marco de aprendizaje que incorpore métodos estadísticos avanzados. Este método mejorará el análisis de grandes conjuntos de datos observacionales, permitiendo una visión independiente del modelo de varias teorías cosmológicas. En última instancia, el equipo de COSMOMALTA hará avanzar nuestra comprensión del universo.
Objetivo
Some of the biggest open problems in modern cosmology are the nature of the cosmic dark sector, the discrepancy between the theoretically predicted versus the observed value of the cosmological constant, and the growing cosmological discordances and tensions between different observational probes. Notably, the Hubble constant, which describes how fast the Universe is expanding when measured locally, has an enormous statistical disagreement with that inferred from the early Cosmic Microwave Background data. These inconsistencies, in turn, necessitate the formulation of new physics beyond the standard cosmological model. Current and ongoing observations, together with upcoming surveys, will produce large volumes of data, whose accumulation and processing will require an upgradation and increase in the sophistication of our statistical tools before applying them to specific problems. Thus, we propose to build a deep learning architecture using advanced statistics in machine learning algorithms like neural networks to be integrated into cosmological community codes for emulated parameter inference. This will help us to select, in a model-independent way, generic features of some cosmological theories that satisfy all observations. Utilising the power of deep learning will be an ideal space to investigate new physics in the observational sector and discriminate between models that are degenerate in terms of current observational approaches, fostering the development of data-driven science as a valuable companion to the model-driven paradigm. The fellowship will contribute to the researcher's career development by acquiring advanced skills in machine learning approaches using Bayesian statistics and developing skills within the cosmological community through a series of events designed to disseminate his results to the broader public. The project will also serve to consolidate and extend the researcher's network of professional contacts within Europe and beyond.
Ámbito científico (EuroSciVoc)
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..
Para utilizar esta función, debe iniciar sesión o registrarse
Le pedimos disculpas, pero se ha producido un error inesperado durante la ejecución.
Necesita estar autentificado. Puede que su sesión haya finalizado.
Gracias por su comentario. En breve recibirá un correo electrónico para confirmar el envío. Si ha seleccionado que se le notifique sobre el estado del informe, también se le contactará cuando el estado del informe cambie.
Palabras clave
Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).
Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).
Programa(s)
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
-
HORIZON.4.1 - Widening participation and spreading excellence
PROGRAMA PRINCIPAL
Ver todos los proyectos financiados en el marco de este programa
Tema(s)
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Régimen de financiación
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
Ver todos los proyectos financiados en el marco de este régimen de financiación
Convocatoria de propuestas
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
(se abrirá en una nueva ventana) HORIZON-WIDERA-2023-TALENTS-02
Ver todos los proyectos financiados en el marco de esta convocatoriaCoordinador
Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.
MSD 2080 MSIDA
Malta
Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.