Descrizione del progetto
Risolvere i misteri dell’universo con l’apprendimento profondo
La cosmologia moderna deve affrontare sfide significative, in particolare per quanto riguarda il misterioso settore oscuro e discrepanze come le misure contrastanti della costante di Hubble. Queste incongruenze evidenziano le lacune nella nostra comprensione dell’universo e suggeriscono la necessità di una nuova fisica al di là del modello attuale. Ad esempio, le misure locali della costante di Hubble differiscono significativamente da quelle derivate dai primi dati del fondo cosmico di microonde. Queste tensioni complicano la nostra comprensione dell’espansione e della struttura cosmica. In quest’ottica, il progetto COSMOMALTA, finanziato dall’UE, intende sviluppare un quadro di apprendimento che incorpori metodi statistici avanzati. Questo approccio migliorerà l’analisi di grandi insiemi di dati basati sull’osservazione, consentendo approfondimenti indipendenti dal modello in varie teorie cosmologiche. In definitiva, COSMOMALTA farà progredire la nostra comprensione dell’universo.
Obiettivo
Some of the biggest open problems in modern cosmology are the nature of the cosmic dark sector, the discrepancy between the theoretically predicted versus the observed value of the cosmological constant, and the growing cosmological discordances and tensions between different observational probes. Notably, the Hubble constant, which describes how fast the Universe is expanding when measured locally, has an enormous statistical disagreement with that inferred from the early Cosmic Microwave Background data. These inconsistencies, in turn, necessitate the formulation of new physics beyond the standard cosmological model. Current and ongoing observations, together with upcoming surveys, will produce large volumes of data, whose accumulation and processing will require an upgradation and increase in the sophistication of our statistical tools before applying them to specific problems. Thus, we propose to build a deep learning architecture using advanced statistics in machine learning algorithms like neural networks to be integrated into cosmological community codes for emulated parameter inference. This will help us to select, in a model-independent way, generic features of some cosmological theories that satisfy all observations. Utilising the power of deep learning will be an ideal space to investigate new physics in the observational sector and discriminate between models that are degenerate in terms of current observational approaches, fostering the development of data-driven science as a valuable companion to the model-driven paradigm. The fellowship will contribute to the researcher's career development by acquiring advanced skills in machine learning approaches using Bayesian statistics and developing skills within the cosmological community through a series of events designed to disseminate his results to the broader public. The project will also serve to consolidate and extend the researcher's network of professional contacts within Europe and beyond.
Campo scientifico (EuroSciVoc)
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione
Siamo spiacenti… si è verificato un errore inatteso durante l’esecuzione.
È necessario essere autenticati. La sessione potrebbe essere scaduta.
Grazie per il tuo feedback. Riceverai presto un'e-mail di conferma dell'invio. Se hai scelto di ricevere una notifica sullo stato della segnalazione, sarai contattato anche quando lo stato della segnalazione cambierà.
Parole chiave
Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).
Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).
Programma(i)
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
-
HORIZON.4.1 - Widening participation and spreading excellence
PROGRAMMA PRINCIPALE
Vedi tutti i progetti finanziati nell’ambito di questo programma
Argomento(i)
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Meccanismo di finanziamento
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento
Invito a presentare proposte
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
(si apre in una nuova finestra) HORIZON-WIDERA-2023-TALENTS-02
Vedi tutti i progetti finanziati nell’ambito del bandoCoordinatore
Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.
MSD 2080 MSIDA
Malta
I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.