Skip to main content
European Commission logo
English English
CORDIS - EU research results
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Therapeutic Effect of Nanobots in the Treatment of Joint Diseases

Objective

Arthritis, a widespread inflammatory condition, affecting millions globally, necessitates urgent advancements in therapeutic approaches. Predominantly characterized by osteoarthritis (OA), this debilitating condition causes joint pain and stiffness, notably impacting the knee, hand, and hip joints. OA, a chronic degenerative disease, intensifies with age, imposing a significant economic burden on healthcare systems. The insufficiency of current treatments highlights the need for innovative therapies. Tissue engineering and regenerative medicine offer promising avenues, with platelet-rich plasma therapy (PRP) emerging as a forefront contender. PRP harnesses the regenerative potential of growth factors (GFs) to stimulate tissue repair processes, particularly in cartilage and bone cells. However, clinical application faces hurdles, notably the rapid degradation of GFs within the intricate synovial fluid (SF) environment, limiting their therapeutic efficacy and distribution. To overcome these challenges, scientists explore advanced drug delivery systems utilizing nanoparticles (NPs) as carriers. Although promising, passive NPs diffusion through viscous biological barriers, such as joint fluids, remains a significant obstacle. In response, OrthoBots introduces enzyme-powered NPs, termed nanobots, as active carriers of GFs within SF. By utilizing enzymatic propulsion, nanobots aim to enhance GF transport and distribution, facilitating targeted cartilage regeneration. This innovative approach holds transformative potential, potentially revolutionizing arthritis therapy by overcoming current limitations and offering more effective and personalized treatment strategies. Through systematic in vitro studies and in vivo proof-of-concept demonstrations, OrthoBots will pave the way for the next generation of arthritis therapeutics, addressing the unmet clinical needs and improving patient outcomes.

Keywords

Host institution

FUNDACIO INSTITUT DE BIOENGINYERIA DE CATALUNYA
Net EU contribution
€ 150 000,00
Address
CARRER BALDIRI REIXAC PLANTA 2A 10-12
08028 Barcelona
Spain

See on map

Region
Este Cataluña Barcelona
Activity type
Research Organisations
Links
Total cost
No data

Beneficiaries (1)