Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Scientific insights into H2 combustion under elevated pressure conditions

Project description

Experimental and numerical analysis of high-pressure hydrogen combustion

Exploiting the potential of hydrogen as a clean and efficient fuel for gas turbines requires greater understanding of the effect of pressure on combustion physics. The effect of pressure on hydrogen’s high diffusivity and reactivity on the turbulent burning rate is crucial for the stable operation of gas turbines. The EU-funded InsigH2T project will leverage high-pressure experiments and numerical simulations to gain insight into the combustion physics of hydrogen to enable its use in industrial burner geometries and configurations. The team will study the effect of pressure on the turbulent burning rate, thermoacoustic response and emissions performance of premixed hydrogen flames. The developed models and tools will help reduce time and cost in accelerating deployment of clean and efficient hydrogen-fired gas turbines.

Objective

InsigH2t aims to advance the current scientific understanding regarding the effect of pressure on the turbulent burning rate, thermoacoustic response, and emissions performance of premixed hydrogen flames under relevant gas-turbines operating conditions. Hydrogen, with its high diffusivity and reactivity, poses significant challenges to its clean and efficient utilisation as a fuel in gas-turbines, due to the lack of understanding of its pressure-dependent turbulent burning rate, crucial for combustion stability in gas-turbines operation. InsigH2t leverages high-pressure experimental measurements, featuring advanced optical diagnostics, coupled to cutting-edge direct numerical simulations, focusing on a selection of simple canonical flames that are paradigms of more complex industrial burner geometries and configurations. The fundamental insights gained will facilitate the development of advanced models and enhanced design tools, empowering industrial OEMs to reduce the significant development time and costs of hydrogen combustion technologies. By leveraging science-based predictive capabilities, InsigH2t aims to accelerate the deployment of clean, reliable, and efficient hydrogen-fired gas turbines. The project's impact extends beyond scientific understanding, addressing directly relevant industry challenges. Crucially, the involvement of two gas turbine OEMs ensures full alignment with the Strategic Research and Innovation Agenda of the Clean Hydrogen Joint Undertaking, facilitating the swift transfer of improved combustion methodologies and understanding towards application in operational power plants. Ultimately, InsigH2t's contributions align fully with the objectives of the EU Green Deal, reducing dependency on fossil fuels and offering a tangible pathway towards a more sustainable energy future.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-JU-RIA - HORIZON JU Research and Innovation Actions

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) HORIZON-JTI-CLEANH2-2024

See all projects funded under this call

Coordinator

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET NTNU
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 001 174,04
Address
HOGSKOLERINGEN 1
7491 TRONDHEIM
Norway

See on map

Region
Norge Trøndelag Trøndelag
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (8)

Partners (2)

My booklet 0 0