Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

High-pressure anion exchange membrane electrolyzers for large-scale applications

Project description

Solution for sustainable and highly efficient hydrogen production

The push for novel green energy sources, solutions, and innovations has sparked growing interest in hydrogen, particularly green hydrogen fuel. However, despite this increased interest and the emergence of new solutions, the novelty of the concept means most production methods remain inefficient or underdeveloped. The EU-funded HyPrAEM project aims to develop a groundbreaking Anion Exchange Membrane Electrolyser stack and a layout capable of producing hydrogen at unprecedented gauge pressures. This would enable direct integration into various processes used by the thermochemical industry. Additionally, the project will leverage green energy and storage solutions to advance the technology while ensuring high efficiency and sustainability.

Objective

The HyPrAEM project aims to develop a disruptive Anion Exchange Membrane Electrolyzer (AEMEL) stack and BoP layout capable of producing hydrogen directly at 100 barg, enabling direct integration into the thermochemical industry. The 100 kW/100 bar AEMEL stack, with an active area of 500 cm2 will be demonstrated for > 3000 h under both continuous and discontinuous operation at the site of an end user. integrating wind, solar, batteries, and HyPrAEM’s electrolyzer, to push the AEMEL technology to TRL 5. The stack will operate at a nominal current density of 2 A/cm2 at 1.75 V per cell with an efficiency of ~ 85%, corresponding to an energy consumption of ~ 46.9 kWh/kg. The proposed stack will include consortium-developed CRM-free/lean electrocatalysts (0-0.05 mg/W), high-performance (reinforced) AEM membranes, separately optimized ionomers for cathode and anode, and microstructure optimized porous transport layers and membrane electrode assemblies (MEA). All components will be optimized for high differential pressure operation and durability, exploiting the Consortium’s unique capabilities for high pressure testing. Round Robin testing and harmonization between all partner testing facilities will be carried out to ensure consistency and interoperability. Specific AST protocols will be developed and validated within the project to assess and optimize degradation characteristics of specific components within the MEA and the stacks. Multi-physics models and a digital twin for the 100 kW stack will be developed to further aid the understanding and optimization of the component and stack design, and to support the operation of the system. Sustainability and recycling aspects will be addressed, and comprehensive techno-economic and life cycle assessments will be conducted. Dissemination and exploitation will be proactively pursued to maximize the impact of the developments within HyPrAEM. 

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-JU-RIA - HORIZON JU Research and Innovation Actions

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) HORIZON-JTI-CLEANH2-2024

See all projects funded under this call

Coordinator

DANMARKS TEKNISKE UNIVERSITET
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 083 179,51
Address
ANKER ENGELUNDS VEJ 101
2800 Kongens Lyngby
Denmark

See on map

Region
Danmark Hovedstaden Københavns omegn
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (8)

Partners (2)

My booklet 0 0