Project description
Sustainable green hydrogen from seawater
As the world strives to combat climate change, the need for sustainable energy solutions has never been greater. Green hydrogen is seen as a key element in decarbonising various sectors, but existing production methods are often expensive and energy-intensive. Additionally, producing green hydrogen from seawater remains a challenge due to the corrosive nature of saltwater and the need for efficient, low-cost systems. To address these issues, the EU-funded ASTERISK problem will integrate seawater treatment with green hydrogen production using an anion exchange membrane (AEM) electrolyser which is free of platinum group metal (PGM). The project focuses on developing AEM stack components that are stable and compatible under saline conditions. Overall, ASTERISK strives to support the EU’s renewable energy and carbon neutrality goals.
Objective
ASTERISK proposes integrating seawater treatment and green hydrogen production using a Platinum Group Metal (PGM)-free anion exchange membrane (AEM) electrolyser. The consortium will work on developing AEM stack components compatible and stable under saline conditions, namely water oxidation and water reduction electrocatalysts, anion exchange ionomers and membranes, porous transport layers and electrical contacts. ASTERISK will incorporate a minimal seawater treatment step before the stack to remove biological, organic and suspended solids content with minimal energy requirements and operating costs, leaving the ions naturally present in seawater to enter the stack. The project will meet the challenging KPIs set by this call and significantly improve upon the degradation rate of <5% over 500h operation leveraging the current experience on materials and membranes design already developed in ongoing projects involving several ASTERISK partners. A final ASTERISK demo will achieve up to 100 gH2/h production on a 5 kWe stack operating for 2000h, to achieve the goal of reaching TRL 4 at project end.
The technical work will be complemented with an eco-design process supported by an environmental and socio-economic analysis to guide the development of a low impact and circular designed AEM device maximising socio-economic benefits. A techno-economic and exploitation plan to move from laboratory scale single-cell to a multi-stack electrolyser will be studied to ensure a fast-track to commercialisation. If successful, ASTERISK will advance cost-effective and sustainable green hydrogen production and contribute to the European Union's long-term carbon neutrality and renewable energy leadership goals.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.2.5 - Climate, Energy and Mobility
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-JU-RIA - HORIZON JU Research and Innovation Actions
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-JTI-CLEANH2-2024
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
H91 Galway
Ireland
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.