Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Vision transformers with ferroelectric oxides

Project description

Energy efficient AI for the edge

Many current technologies supporting AI applications struggle to provide high performance without consuming too much power. This issue is critical for vision transformers (ViTs), which are used in AI for image and video processing. As demand for AI at the edge increases, the need for efficient solutions becomes urgent. In this context, the EU-funded ViTFOX project aims to solve this problem by developing a new type of semiconductor technology. By using Si-compatible ferroelectric materials, the project will create ViTs that are more energy efficient, offering over 50 tera operations per second/watt. ViTFOX will combine expertise from Europe and Korea to demonstrate innovative ferroelectric ViTs and increase the technological maturity taking advantage of the newly established JU CHIPS pilot lines.

Objective

ViTFOX project develops a ferroelectric-augmented intelligent semiconductors technology to demonstrate a Vision Transformer (ViT) with superb energy efficiency of > 50 TOPS/Watt and make an impact on AI-powered edge applications. The project aims to strengthen the leading position of EU and Korea in Hafnia-based Si-compatible ferroelectric electronics pioneered in Europe (Germany) and significantly advanced by Korean researchers, members of this project. ViTFOX proposes advancements beyond the state of the art, at a TRL 4-5, in the whole value chain from materials and devices to heterogeneous and monolithic integration as well as design and simulation of the ViT circuits and systems.
Three of the project objectives target the design and fabrication of the main components of the ViT, namely a Compute-in Memory demonstrator, a circuit level simulator and a hardware-software co-optimization platform with ferroelectric oxides. The platform will support two types of emerging memories, high-density 3D FeRAM developed in Korea and epitaxial Ferroelectric Tunnel Junctions developed in EU. Another set of objectives target the low voltage/low power operation of ferroelectric devices using epitaxial growth, new metal electrodes and advanced processing techniques such as atomic layer etching as well as the integration of these devices to fabricate memory arrays used in the ViT.
The consortium consists of five Universities, two research organizations and one large European technology development laboratory, mobilizing all necessary expertise and infrastructure in ferroelectric and semiconductor technologies.
The consortium plans to valorize the technology in two of the newly established Chips JU pilot lines on advanced integration during the project and advance it to higher TRL (> 5) after the project end to ensure manufacturability for future volume production.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-JU-RIA - HORIZON JU Research and Innovation Actions

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) HORIZON-JU-Chips-2024-3-RIA

See all projects funded under this call

Coordinator

"NATIONAL CENTER FOR SCIENTIFIC RESEARCH ""DEMOKRITOS"""
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 499 950,00
Address
END OF PATRIARCHOU GRIGORIOU E AND 27 NEAPOLEOS STREET
15 341 AGIA PARASKEVI
Greece

See on map

Region
Αττική Aττική Βόρειος Τομέας Αθηνών
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 499 950,00

Participants (2)

Partners (5)

My booklet 0 0