Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Meta-Learned Machine-Learning Interatomic Potentials for Ab initio Engineering of Chemical and Microstructural Complexity

Description du projet

Nouveau cadre de méta-apprentissage pour décrire les interactions atomiques

Les potentiels interatomiques en apprentissage automatique (MLIP) sont des outils puissants qui utilisent l’IA pour simuler des matériaux avec une précision de niveau quantique, permettant aux chercheurs de prédire leurs propriétés. Malgré leur potentiel, la complexité de la construction et de l’optimisation des MLIP a limité leur utilisation généralisée. Le projet META-LEARN, financé par le CER, introduira un cadre de méta-apprentissage qui devrait aider à simplifier et à améliorer davantage le développement des MLIP. L’une des innovations clés sera MLIP-COPILOT, un outil basé sur l’IA qui fournit des recommandations personnalisées pour les algorithmes, les ensembles de données et les méthodes d’entraînement. En rendant les MLIP plus efficaces et accessibles, META-LEARN ouvrira de nouvelles possibilités de conception de matériaux durables, tout en aidant les chercheurs à relever des défis matériels complexes.

Objectif

Materials engineers have dreamed for decades of optimizing materials starting from the quantum mechanical laws of nature. Mastering the inherent chemical and microstructural complexity promises access to outstanding properties of structural and functional materials. Machine-learning interatomic potentials (MLIPs) ignited hope by offering quantum-mechanical accuracy for systems with many atoms. However, the full capacity of MLIPs remains untapped due to the complexity of the MLIP construction process and the required simulations.

META-LEARN will cut the MLIP Gordian knot and raise MLIP construction to the next level. Our vision is a meta-learning framework that unleashes the full strength of MLIPs for large-scale simulations to a broad community. We will meta-learn the optimal MLIP-construction processes by acquiring and exploiting domain-expert knowledge from various branches of advanced ab initio and large-scale simulations.

META-LEARN leverages a comprehensive pool of algorithms to ensure an optimal, task-oriented accuracy-efficiency trade-off. MLIPs that account for magnetic and electronic excitations will broaden the materials spectrum. MLIP-based sampling will boost the efficiency of thermodynamic predictions. Deciphering the microstructure genome will provide the optimal training for large-scale defects. Sustainability challenges will be tackled at the limit of chemical and microstructural complexity: Multicomponent H-storage and coating materials.

META-LEARN will encode the knowledge of the MLIP construction and make it openly available via the MLIP-COPILOT, a knowledge-graph-based artificial intelligence tool. The MLIP-COPILOT will provide the optimal combinations of MLIP algorithms, hyperparameters, training datasets, and training sequences for different materials and simulation tasks. The MLIP-COPILOT will remain flexibly extensible for the community beyond the project’s scope, allowing for the addition of new types of simulations, materials, and MLIPs.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Mots‑clés

Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

HORIZON-ERC - HORIZON ERC Grants

Voir tous les projets financés dans le cadre de ce programme de financement

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

(s’ouvre dans une nouvelle fenêtre) ERC-2024-ADG

Voir tous les projets financés au titre de cet appel

Institution d’accueil

UNIVERSITY OF STUTTGART
Contribution nette de l'UE

La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.

€ 2 500 000,00
Adresse
KEPLERSTRASSE 7
70174 Stuttgart
Allemagne

Voir sur la carte

Région
Baden-Württemberg Stuttgart Stuttgart, Stadtkreis
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

Aucune donnée

Bénéficiaires (1)

Mon livret 0 0