Project description
Enhancing perovskite tandem solar cells with stable plasmonic nanoparticles
To achieve EU carbon neutrality goals, efficient and affordable photovoltaic technology is essential. Perovskite solar cells show promise, but promising lead-tin (PbSn) variants have suboptimal light absorption. Noble metal nanoparticles can enhance this, but are often unstable and expensive. With the support of the Marie Skłodowska-Curie Actions programme, the PlasmonKITE project will improve all-perovskite tandem solar devices by integrating stable, optically active nanoparticles based on abundant materials. This integration is designed to enhance light-harvesting capabilities, resulting in advanced solar cells for various applications. The project will develop model perovskite devices as building blocks for tandem solar cells that efficiently absorb light across the visible and near-infrared spectrum. This technology has the potential to outperform conventional silicon photovoltaics while reducing costs.
Objective
Achieving critical EU goals of ubiquitous carbon neutrality and a smooth green energy transition requires the development of highly efficient and low-cost photovoltaic technology. Perovskite solar cells are the most exciting recent breakthrough in renewable energy technology due to their low cost, ease of manufacture, and high efficiency. However, the most promising perovskite compositions, such as PbSn, are plagued by low light harvesting efficiency. Optically active nanoparticles, such as gold and silver, have been investigated to increase the light absorption of PbSn perovskite, but are chemically unstable and expensive. To address this pressing concern, PlasmonKITE proposes the computational and experimental coupling of abundant, optically active, and highly stable nanoparticles to lightweight and flexible all-perovskite tandem solar devices, enhancing their light harvesting ability and achieving next-generation solar cells with broad applications. Photophysical modeling will be employed to determine the optimal nanoparticle geometries to maximize the light harvesting enhancement within the surrounding perovskite material. Then, the specified nanoparticles will be synthesized and embedded in perovskite films which will be tested for stability and photoconversion efficiency. Finally, model perovskite devices will be used as building blocks to build tandem all-perovskite solar cells which absorb efficiently across the visible and near-IR spectrum. The realization of this new technology is theorized to achieve unprecedented performance at a lower cost than conventional silicon photovoltaics, accelerating the green energy transition.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences chemical sciences inorganic chemistry transition metals
- natural sciences mathematics pure mathematics geometry
- engineering and technology nanotechnology nano-materials
- natural sciences chemical sciences inorganic chemistry metalloids
- engineering and technology environmental engineering energy and fuels renewable energy solar energy photovoltaic
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-MSCA-2024-PF-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
41004 Sevilla
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.