Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Unraveling Bilobalide Biosynthesis for Sustainable and Scalable Production in Yeast

Objectif

Ginkgo biloba extracts are among the most widely used plant-based health supplements in the United States and Europe. However, increasing demand has led to unsustainable overharvesting, resulting in Ginkgo biloba being classified as an endangered species. These extracts contain bioactive compounds, such as ginkgolides and bilobalide. Bilobalide, in particular, is valued for its neuroprotective, anti-ischemic, and insect-repellent properties, with potential applications in treating Alzheimer’s disease, dementia, sclerosis, and as a biopesticide.
To address these societal and environmental challenges, this project aims to develop a scalable, sustainable production platform for bilobalide using synthetic biology in baker’s yeast. This approach will reduce pressure on G. biloba populations, contributing to biodiversity preservation while promoting innovative biotechnological solutions to meet the demand for natural products. A central focus of this research is to elucidate the biosynthetic pathway of bilobalide, which remains poorly understood.
It is hypothesized that bilobalide is synthesized either via sesquiterpenoid pathways or through the degradation of ginkgolides. Using complementary experimental systems in yeast and tobacco, I will systematically test both hypotheses to uncover the key biosynthetic steps. Once the bilobalide biosynthesis pathway is elucidated, I will engineer it in baker’s yeast to create a cost-effective, scalable, and sustainable production system.
This project will leverage the tools and datasets available in the host lab, along with my expertise in plant secondary metabolism and pathway gene characterization, to achieve its goals. It aligns with the European Union’s priorities of fostering innovation, sustainability, and natural resource conservation, while advancing biotechnology for health and agriculture. Ultimately, this research will contribute to the green transition and aid in the conservation of endangered species like G. biloba.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Coordinateur

KOBENHAVNS UNIVERSITET
Contribution nette de l'UE
€ 263 393,28
Coût total
Aucune donnée