Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Single jUNction perovsKIte solar cell powereD hydrogen production

Objective

Growing technological and societal advances have accelerated the energy requirements. To meet energy demands, reliance on fossil fuels has led to catastrophic changes in the environment and global climate due to carbon emissions. Renewable energy sources offer excellent ways to meet energy demands in addition to reducing carbon emissions. Although solar energy is most abundant on Earth, its variability across locations and times makes it unreliable for consistent energy supply. Thus, efficient energy storage technologies are also essential for a sustainable future. Perovskite solar cells (PSCs) have emerged as a highly efficient technology for converting solar energy into electricity owing to their remarkable properties, while hydrogen (H2) is gaining recognition as the ultimate source of green fuel. A photovoltaic-electrochemical (PV-EC) arrangement offers an excellent solution for sustainable solar energy conversion and storage. However, previously reported PV-EC systems employ two or more PV devices or solar cells connected in series to afford enough voltage (1.7 V) for H2 production. This proposal aims to ingeniously design a compact PV-EC device, using a single-junction PSC providing sufficient voltage and employing this to an EC cell for H2 production. The main objectives are: 1) To fabricate PSC using carefully selected perovskite materials with optimally wide bandgap and apply passivation strategies to achieve a high voltage of >1.5 V at maximum power point (MPP). 2) To further enhance the voltage up to a remarkable value of ~1.7 V at MPP, specifically designed photonic nanostructures will be incorporated into the PSCs for reducing the Boltzmann loss (mismatch in incident and emitted lights). 3) To assemble a PV-EC compact device utilizing the developed PSC for H2 production through water splitting. This research will motivate the incorporation of nanophotonic structures in other PV technologies and facilitate high voltages for energy storage applications.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Coordinator

FUNDACIO INSTITUT DE CIENCIES FOTONIQUES
Net EU contribution
€ 209 914,56
Address
AVINGUDA CARL FRIEDRICH GAUSS 3
08860 Castelldefels
Spain

See on map

Region
Este Cataluña Barcelona
Activity type
Research Organisations
Links
Total cost
No data
My booklet 0 0