Project description
Techniques for ILAC operation on LEO satellites
The arrival of 6G communications technologies has sparked innovation and development. Integrated localisation and communications (ILAC) technology is a key feature of 6G networks and could be greatly enhanced when deployed on low-earth-orbit (LEO) satellites, offering improved flexibility for localisation and higher-capacity communication. However, integrating ILAC on LEO satellites faces several challenges, including high mobility, time-varying channels, and significant Doppler shifts. Supported by the Marie Skłodowska-Curie Actions programme, the LILAC-6G project will develop groundbreaking integrated localisation and communications techniques for 6G LEO satellite systems. The project will design novel signal waveforms for the satellites and create specialised algorithms for localisation, tracking, adaptive resource allocation, and satellite handover.
Objective
Integrated localization and communications (ILAC) is a key feature of the future sixth-generation (6G) network. Benefiting from wide coverage and flexible deployment, operating ILAC in low-earth-orbit (LEO) satellite systems is a promising way to provide ubiquitously flexible localization and high-capacity communication. Particularly, in terms of localization, LEO satellite systems can break through limitations of global navigation satellite systems (GNSS) and provide superior signal quality for ILAC service. Although the LEO satellite systems are crucial for future 6G networks, they also bring challenges. First, the current signal waveforms for LEO satellite systems are primarily optimized for communication purposes, which may fail to meet the requirements of ILAC in the 6G networks. Second, the high mobility of LEO satellites leads to time-varying channels and significant Doppler shifts in satellite-ground links. Conventional positioning methods, generally tailored for terrestrial signal waveforms and assuming linear time-invariant channels, will be suboptimal in this new scenario. To address these challenges, this research aims to develop novel integrated localization and communication methods tailored for 6G LEO satellite systems with time-varying channels. To this end, three work packages (WPs) are conducted. WP1 is to design advance signal waveforms for integrated localization and communication in 6G LEO satellite systems and conduct a performance analysis considering the time-varying channel. WP2 is to develop advanced LEO satellite-based localization and tracking algorithms for moving targets. WP3 is to develop adaptive resource allocation and satellite handover algorithms for ILAC with multiple LEO satellites. This project aims to develop innovative integrated localization and communications techniques for 6G LEO satellite systems, facilitating precise positioning and high-data-rate communications for moving targets.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- social sciences social geography transport navigation systems satellite navigation system global navigation satellite system
- engineering and technology mechanical engineering vehicle engineering aerospace engineering satellite technology
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-MSCA-2024-PF-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
412 96 GOTEBORG
Sweden
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.