Objective
3DCOMPASS aims to revolutionize the production of complex shaped all-solid-state lithium batteries (ASSLB) using Xolography volumetric 3D printing, a technology that offers superior speed, resolution, and freedom of shape compared to traditional manufacturing techniques including conventional 3D printing methods. The project focuses on the development of Xolography 3D printing for solid state electrolytes, both polymeric and ceramic, enabling the efficient fabrication of solid-state electrolytes with unexplored architectures. 3DCOMPASS will firstly develop containing Li-conductors and suitable for Xolography process with low optical density (<0.22 for 1cm of path at 405 nm), high viscosity (10-60 Pa s) and high polymerization rates. In a second step the printing process will be optimized in relation to resins formulations to obtain the desired speed (55 mm3/h) and resolution (5-20 µm) impossible to achieve with traditional 3D printing techniques. Finally complex shaped electrolytes will be fabricated by Xolography with tailored architectures to: i) enhance the interfacial area with the electrodes, ii) allow high cathode loadings, iii) increase the critical current density vs. Li-metal. The produced electrolytes will be used to assemble half and full cells with Li-metal as anode and Mn-doped LFP as cathode with the following expected performances: ionic conductivity of the electrolytes >10-4 S cm-1 at room temperature, capacity >400Wh/kg, high resistance to dendrite growth with a critical current density > 0.5 mA/cm2. 3DCOMPASS will provide a new class of materials printable by Xolography and at the same time open the door to a new generation of ASSLB with superior performances allowed by micrometric scale architectures possible to produce in a fast and scalable way. Furthermore, the career of the candidate is expected to largely benefit from the present proposal thanks to its training in a strategic field (3D printing for ASSLB).
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
You need to log in or register to use this function
Keywords
Programme(s)
- HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA) Main Programme
Funding Scheme
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European FellowshipsCoordinator
08930 Sant Adria De Besos
Spain