Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Selection of DNA nanostructures for multivalent binding and drug delivery

Project description

DNA libraries for smarter medicine

Nanomedicine promises breakthroughs in treating diseases, from drug delivery to diagnostics. But progress is slowed because each potential DNA nanostructure must be designed and tested individually, limiting discoveries and often causing the best solutions to be overlooked. The ERC-funded SELECTDNA project introduces a revolutionary evolution-based approach: vast libraries of DNA nanostructures folded into complex 3D shapes that can be tested simultaneously. Using sequencing and amplification, researchers can identify and reproduce only the top-performing designs. These structures will be used to create antibody alternatives for detecting bacterial and viral proteins, as well as to deliver gene-silencing therapies directly to specific cells including cancer cells. SELECTDNA is transforming nanomedicine into an evolutionary selection process.

Objective

In nanomedicine, patterns, shapes and mechanics are tuned to improve performance in applications such as drug delivery and pattern matching binders. A fundamental bottleneck is that structures need to be individually assembled and tested limiting the number that can be screened and likely missing structures with optimal performance. In this proposal we describe a new class of DNA nanostructures, assembled as diverse libraries of branched DNA wireframes with complex 3D shapes that fold from single stranded genomes. The structure genomes can be amplified and sequenced allowing us to test vast pools of structures in a single pot and amplify those with the best performance transforming nanomedicine from a design to a selection problem. This proposal has three objectives: First, we will refine the tools to assemble DNA structure libraries, perform selection and analyse the sequencing data to identify structures with optimal performance. Secondly, we aim to develop DNA based multivalent antibody alternatives by selecting DNA structures that can pattern multiple aptamers with respect to the epitope distribution on targets. We will target pathogenic proteins of both bacterial and viral origin to create a new route to rapid to develop / deploy binders for diagnostics. We also aim to construct multivalent binders that are specific for nucleosomes with multiple histone modifications.
The interaction between DNA nanostructures and cells are controlled by geometry, mechanics and patterns of moieties. In our third objective we will use cell-type specific uptake a selection pressure to produce patterned DNA nanostructures that can deliver gene silencing RNA with specificity to diverse cell types, including cancer cells.
By moving nanomedicine from single-pot rational design to an evolutionary approach inspired by how nature produces protein and RNA structures we hope to improve current applications and unlock new applications that can’t be approached with current methods.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-ERC - HORIZON ERC Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2025-STG

See all projects funded under this call

Host institution

KAROLINSKA INSTITUTET
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 499 812,00
Address
NOBELS VAG 5
171 77 STOCKHOLM
Sweden

See on map

Region
Östra Sverige Stockholm Stockholms län
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 499 812,00

Beneficiaries (1)

My booklet 0 0