Objectif
"Our main goal is to apply the powerful analytical tools that are now emerging from areas of more ""applicable"" parts of mathematics such as ergodic theory, random walks, harmonic analysis and additive combinatorics to some longstanding open problems in more theoretical parts of mathematics such as group theory and number theory. The recent work of Green and Tao about arithmetic progressions of prime numbers, or Margulis' celebrated solution of the Oppenheim Conjecture about integer values of quadratic forms are examples of the growing interpenetration of such seemingly unrelated fields. We have in mind an explicit set of problems: a uniform Tits alternative, the equidistribution of dense subgroups, the Andre-Oort conjecture, the spectral gap conjecture, the Lehmer problem. All these questions involve group theory in various forms (discrete subgroups of Lie groups, representation theory and spectral theory, locally symmetric spaces and Shimura varieties, dynamics on homogeneous spaces of arithmetic origin, Cayley graphs of large finite groups, etc) and have also a number theoretic flavor. Their striking common feature is that each of them enjoys some intimate relationship, whether by the foreseen methods to tackle it or by its consequences, with ergodic theory on the one hand and harmonic analysis and combinatorics on the other. We believe that the new methods being currently developed in those fields will bring crucial insights to the problems at hand. This proposed research builds on previous results obtained by the author and addresses some of the most challenging open problems in the field."
Champ scientifique (EuroSciVoc)
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: https://op.europa.eu/fr/web/eu-vocabularies/euroscivoc.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: https://op.europa.eu/fr/web/eu-vocabularies/euroscivoc.
- sciences naturelles mathématiques mathématiques appliquées systèmes dynamiques
- sciences naturelles mathématiques mathématiques pures mathématiques discrètes combinatoire
- sciences naturelles mathématiques mathématiques pures arithmétique nombres premiers
- sciences naturelles mathématiques mathématiques pures algèbre géométrie algébrique
Vous devez vous identifier ou vous inscrire pour utiliser cette fonction
Nous sommes désolés... Une erreur inattendue s’est produite.
Vous devez être authentifié. Votre session a peut-être expiré.
Merci pour votre retour d'information. Vous recevrez bientôt un courriel confirmant la soumission. Si vous avez choisi d'être informé de l'état de la déclaration, vous serez également contacté lorsque celui-ci évoluera.
Mots‑clés
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Programme(s)
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Thème(s)
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Appel à propositions
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
ERC-2007-StG
Voir d’autres projets de cet appel
Régime de financement
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
Institution d’accueil
91405 ORSAY CEDEX
France
Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.