Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Fundamental groups, etale and motivic, local systems, Hodge theory and rational points

Objective

From the viewpoint of geometric classification, there are two extreme cases of smooth varieties X defined over an algebraically closed field: those which are hyperbolic, and those which are rationally connected. If k is no longer algebraically closed, a central question of Algebraic Arithmetic Geometry is what properties of k force X to have a rational point in those two opposed cases. It is conjectured (Lang-Manin, extended by Kollár), that rationally connected varieties have a rational point over a C1 field. It has been shown for function fields by Graber-Harris-Starr and by myself over a finite field. There is no relation between their geometric proof relying on the geometry of the moduli of punctured curves and my proof relying on motivic analogies between Hodge level and slopes in l-adic cohomology. The study of the case of the maximal unramified extension of the p-adic numbers might provide a bridge through the use of the inertia. Very little is known on Grothendieck's section conjecture, which predicts that sections of the Galois group of k, assumed to be a finite type over Q, into the arithmetic fundamental group of X, are given by rational points. Our hope goes in two directions, arithmetic and geometric on one side, motivic on the other. With Wittenberg, we hope to use Beilinson's geometric description of the nilpotent completion of the fundamental group, and with Levine, we wish to characterize sections of the motivic groups of mixed Tate motives over k and X and relate this to the section conjecture.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2008-AdG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-AG - ERC Advanced Grant

Host institution

FREIE UNIVERSITAET BERLIN
EU contribution
€ 716 848,01
Address
KAISERSWERTHER STRASSE 16-18
14195 Berlin
Germany

See on map

Region
Berlin Berlin Berlin
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (2)

My booklet 0 0