Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
Contenuto archiviato il 2024-06-18

Fundamental groups, etale and motivic, local systems, Hodge theory and rational points

Obiettivo

From the viewpoint of geometric classification, there are two extreme cases of smooth varieties X defined over an algebraically closed field: those which are hyperbolic, and those which are rationally connected. If k is no longer algebraically closed, a central question of Algebraic Arithmetic Geometry is what properties of k force X to have a rational point in those two opposed cases. It is conjectured (Lang-Manin, extended by Kollár), that rationally connected varieties have a rational point over a C1 field. It has been shown for function fields by Graber-Harris-Starr and by myself over a finite field. There is no relation between their geometric proof relying on the geometry of the moduli of punctured curves and my proof relying on motivic analogies between Hodge level and slopes in l-adic cohomology. The study of the case of the maximal unramified extension of the p-adic numbers might provide a bridge through the use of the inertia. Very little is known on Grothendieck's section conjecture, which predicts that sections of the Galois group of k, assumed to be a finite type over Q, into the arithmetic fundamental group of X, are given by rational points. Our hope goes in two directions, arithmetic and geometric on one side, motivic on the other. With Wittenberg, we hope to use Beilinson's geometric description of the nilpotent completion of the fundamental group, and with Levine, we wish to characterize sections of the motivic groups of mixed Tate motives over k and X and relate this to the section conjecture.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Parole chiave

Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

ERC-2008-AdG
Vedi altri progetti per questo bando

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

ERC-AG - ERC Advanced Grant

Istituzione ospitante

FREIE UNIVERSITAET BERLIN
Contributo UE
€ 716 848,01
Indirizzo
KAISERSWERTHER STRASSE 16-18
14195 Berlin
Germania

Mostra sulla mappa

Regione
Berlin Berlin Berlin
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

Nessun dato

Beneficiari (2)

Il mio fascicolo 0 0