Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS
Contenido archivado el 2024-06-18

Hierarchical Motif Vectors for Protein Alignment and Functional Classification

Objetivo

This proposal introduces hierarchical motif vectors for numerical analysis of sequence motifs, and develops a novel framework for alignment and functional classification of proteins. Hierarchical motif vectors will be computed using multi-scale decompositions of property sequences obtained by converting amino acid sequences into numeric sequences of various amino acid properties. These hierarchical motif vectors will capture the variations of amino acid properties in the vicinity of each amino acid in the sequence of a given protein. We will develop alignment algorithms for amino acid sequences that match their hierarchical motif vectors. We will also use unsupervised statistical learning algorithms to identify hierarchical motif vectors specific to functional protein groups, notably the antigen binding proteins, transcription factors, growth factors, and glycosylation proteins. We will then apply these methods to protein classification, using the overlap scores from the hierarchical motif vector-based sequence alignment as well as the presence and extent of hierarchical motif vectors specific to the protein group in consideration. We will validate all methods developed in this project against existing sequence alignment, motif detection, and protein classification algorithms in the literature. Among the innovations of the project is the use of hierarchical motif vectors for characterization of local physico-chemical variations along an amino acid sequence. This allows analyzing sequence motifs by general machine learning methods via the embedded vector space arrangement. Next, sequence alignment can be tuned to different amino acid properties at various scales, improving the potential for sequence alignment-based protein similarity in functional classification. Furthermore, group-specific hierarchical motif vectors will be identified as those that occur exclusively among the members of a protein group, increasing their likelihood of bearing functional specificity.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..

Para utilizar esta función, debe iniciar sesión o registrarse

Programa(s)

Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

FP7-PEOPLE-IRG-2008
Consulte otros proyectos de esta convocatoria

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

MC-IRG - International Re-integration Grants (IRG)

Coordinador

IZMIR INSTITUTE OF TECHNOLOGY
Aportación de la UE
€ 75 000,00
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

Sin datos
Mi folleto 0 0