Skip to main content

Biosensors and Sensors for the industrial biosynthesis process of widely used commercial antioxidants: nutraceuticals as additives for food and aquaculture promoting public health and safety

Objective

The purpose of this 2-years project is to develop sensors and biosensors for on-line monitoring growth parameters of industrial bioprocesses for the production of algal biomass and antioxidant compounds such as Xanthophylls. As a model for the design and in-field testing, the following industrial process and culture system have been selected: the natural production of Astaxanthin from the green microalga Haematococcus pluvialis in a tubular photobioreactor. Key parameters such as biomass, pigment content and accumulation profile during the induction process are now experimentally determined offline everyday at commercial production sites by means of complex manual analyses. This routine monitoring further increases production costs, being critical time consuming and requiring manpower. This is a major challenge faced by microalgae companies today, especially in the production of natural carotenoids in comparison with the relatively cheap synthetic analogues. SENSBIOSYN intends to offer a solution to the lack of existing devices able to provide online rapid automatic and reliable information on active compounds accumulation profile and efficacy during their biosynthesis. The proposed project will bring the following competitive advantages to microalgae companies: Increased production - online monitoring will ease decision about time of harvest and culture performance; Reduction of production cost - the introduction of the proposed biosensors in the process control will allow to save work time and manpower and reduce the production cost by at least 30%, which is a big industrial breakthrough. Two optical sensors, for chlorophyll fluorescence measurement and culture medium density, and two electrochemical biosensors, based on the direct measurement of Phosphatidylcholine peroxidative damage by screen printed electrodes and the PSII activity by nanowire FETs, will be manufactured.

Field of science

  • /medical and health sciences/health sciences/public and environmental health
  • /agricultural sciences/agriculture, forestry, and fisheries/fisheries
  • /agricultural sciences/agricultural biotechnology/biomass
  • /engineering and technology/environmental biotechnology/biosensing

Call for proposal

FP7-SME-2008-1
See other projects for this call

Funding Scheme

BSG-SME - Research for SMEs

Coordinator

BIOSENSOR SRL
Address
Via Degli Olmetti 44
00060 Formello
Italy
Activity type
Private for-profit entities (excluding Higher or Secondary Education Establishments)
EU contribution
€ 281 110
Administrative Contact
Giovanni Basile (Dr.)

Participants (5)

AQUAMARIJN RESEARCH BV
Netherlands
EU contribution
€ 399 200
Address
Gerard Doustraat 10
1072 VP Amsterdam
Activity type
Private for-profit entities (excluding Higher or Secondary Education Establishments)
Administrative Contact
Cees Van Rijn (Dr.)
INSTITUTUL NATIONAL DE CERCERTARE DEZVOLTARE PENTRU STIINTE BIOLOGICE RA
Romania
EU contribution
€ 6 400
Address
Splaiul Independentei 296
060031 Bucuresti
Activity type
Research Organisations
Administrative Contact
Simona Carmen Litescu (Dr.)
CONSIGLIO NAZIONALE DELLE RICERCHE
Italy
EU contribution
€ 8 600
Address
Piazzale Aldo Moro 7
00185 Roma
Activity type
Research Organisations
Administrative Contact
Francesca Vergari (Dr.)
BEN-GURION UNIVERSITY OF THE NEGEV
Israel
EU contribution
€ 15 200
Address
.
84105 Beer Sheva
Activity type
Higher or Secondary Education Establishments
Administrative Contact
Daphna Tripto (Ms.)
ALGATECHNOLOGIES (1998) LTD
Israel
EU contribution
€ 235 350
Address
Kibbutz Ketura
88840 D.n. Eilot
Activity type
Private for-profit entities (excluding Higher or Secondary Education Establishments)
Administrative Contact
Mike Harris (Mr.)