Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-28

Long-term synaptic plasticity in interneurons: mechanisms and computational significance

Objective

Memory encoding occurs by strengthening or weakening of synapses among principal neurons. However, excitatory synapses on some inhibitory neurons in the hippocampus also exhibit use-dependent long-term potentiation and depression (LTP and LTD), with important consequences for network homeostasis and information processing. This proposal addresses the following areas: 1. Although the rules determining which forms of plasticity occur at which synapses are emerging in the hippocampus, relatively little is known in other parts of the brain involved in cognition, movement initiation and emotion. We will use electrophysiology, optical imaging and mouse genetics to map out the expression of activity-dependent plasticity at excitatory synapses on inhibitory neurons in the cortex, striatum and amygdala, and relate these to the biophysical and pharmacological properties of the neurons and synapses involved. 2. Although one form of interneuron LTP resembles plasticity in pyramidal neurons, another form requires Ca2+-permeable AMPA receptors and metabotropic glutamate receptors for its induction, and shows features suggestive of pre-synaptic expression. A similar dichotomy exists in two forms of LTD, which depend on either NMDA or Ca2+-permeable AMPA and metabotropic glutamate receptors. We will test the involvement of candidate intracellular and trans-synaptic signalling cascades to understand the mechanisms triggered by distinct conjunction patterns of pre- and post-synaptic activity. 3. What is the computational significance of LTP and LTD in interneurons? The elemental computational roles of different GABAergic interneurons and their firing patterns during behaviourally relevant brain states are beginning to emerge. How synaptic strengthening and/or weakening interact with these network functions is however poorly understood. We will address this through a combination of hypothesis-driven experiments and numerical simulations.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2008-AdG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-AG - ERC Advanced Grant

Host institution

UNIVERSITY COLLEGE LONDON
EU contribution
€ 2 500 000,00
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0