Skip to main content
European Commission logo print header

Quantum Engineering via Dissipation

Project description


FET Open

Due to the ongoing miniaturization of devices, one of the central challenges of the 21st century's technology will be to handle quantum effects at the nanoscale. A first fundamental paradigm shift happened in the mid '90s when it was realized that quantum effects, which from the traditional point of view put fundamental limits on the possible miniaturization, could be exploited to do information theoretic tasks impossible with classical devices. The main obstacle in building such quantum devices however is the occurrence of decoherence, by which coherence within the quantum device gets degraded due to the coupling with the environment.
In this proposal, we propose a second paradigm shift by demonstrating that one can actually take advantage of decoherence if engineered in a smart way. The central focus will be the study of quantum processes driven by dissipation, and we will investigate whether quantum coherence and the associated applications can actually be driven by decoherence. The main tools that we plan to use to achieve that goal originate from the theory of quantum entanglement. The timing of this innovative project is actually perfect as the field of entanglement theory is just mature enough to pursue the ambitious goals stated in this proposal.
The main objectives of this proposal are 1. to set up a rigorous mathematical framework for studying fixed points and convergence rates of dissipative processes; 2. to investigate how highly entangled quantum states arising in strongly correlated quantum systems or in a quantum information theoretic context can be created by dissipative processes; 3. to study quantum devices powered by dissipation such as quantum memories and quantum Metropolis devices; 4. to use such devices to come up with novel ways for implementing quantum computation in the presence of decoherence; 5. to study non-equilibrium phase transitions driven by dissipation and associated to that new possible phases of matter.

Call for proposal

FP7-ICT-2007-C
See other projects for this call

Coordinator

UNIVERSITAT WIEN
EU contribution
€ 225 025,00
Address
UNIVERSITATSRING 1
1010 Wien
Austria

See on map

Region
Ostösterreich Wien Wien
Activity type
Higher or Secondary Education Establishments
Administrative Contact
Susanne Weigelin-Schwiedrzik (Prof.)
Links
Total cost
No data

Participants (4)