Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Three-Dimensional Surface Nano-Patterning: Concepts, Challenges and Applications

Objective

Multifunctional surface nano-patterns on substrates are the foundation of semiconductor nano-devices. There is a major shortcoming of the existing surface nano-patterning techniques - in fact almost all synthesized surface patterns are two-dimensional (2-D) planar structures with low aspect ratio. Thus one of the most attractive advantages of nanomaterials, an extremely large surface area, is missing in the existing 2-D surface nano-patterns. This largely limits the application potential of surface nanostructures on semiconductor devices. In this project, a new concept of three-dimensional (3-D) nano-patterning is proposed. Using this multi-functional 3-D surface nano-patterning technique, large-scale surface patterns of well-defined one-dimensional (1-D) nanostructures can be synthesized by different fabrication strategies. The realization of the 3-D surface nano-patterning will not only retain the attractive features of the conventional 2-D surface nano-patterning (e.g. high patterning density), but also bring back one of the basic advantages of nanomaterials, i.e. an extremely large surface area. Using an innovative addressing system proposed in this project, it is possible to investigate and analyze the properties of an individual unit within a regular surface nanostructure array and the coupling interaction between the adjacent units. By integrating these data, the properties of the whole ensembles could be obtained. This bottom-up investigation might pave the way to a complete property tuning based on the structural design of surface 1-D nanostructures. The large-scale 1-D surface nano-patterns with well-defined structures have broad application potentials for different high-performance and property-controllable nano-devices.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2009-StG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-SG - ERC Starting Grant

Host institution

TECHNISCHE UNIVERSITAET ILMENAU
EU contribution
€ 1 008 851,74
Address
EHRENBERGSTRASSE 29
98693 Ilmenau
Germany

See on map

Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (2)

My booklet 0 0