Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
Contenu archivé le 2024-05-29

Central Limit Properties of Convex Bodies

Objectif

Asymptotic convex geometry is concerned with the geometric and linear properties of finine dimensional normed spaces or convex bodies, the emphasis being on the asymptotic behavior of various quantitative parameters as the dimension grows to infinity. It i s a central component of an emerging interdisciplinary area, which deals with high dimensional phenomena and lies on the intersection of geometry, analysis, probability and combinatorics. An intriguing question in asymptotic convex geometry is to understan d the central limit properties of convex bodies. The problem, which is increasingly attracting the attention and the efforts of many researchers, can be vaguely formulated as follows : is it true that every convex body of high dimension has most of its mar ginal distributions essentially Gaussian ? The problem is naturally linked to the classical slicing problem and to the study of volume concentration on isotropic convex bodies. Pajor has done pioneering work on isotropicity and he is one of the leading exp erts in asymptotic convex geometry. Paouris has devoted a lot of effort on this particular subject : he has already contributed to the picture and brings interesting new ideas and questions. The area is open and promising, and one should expect important n ew steps. A second main goal of this project is to help the participant researcher to learn new techniques in his field, but also to have exposure to a variety of influences and to identify new fields in which he might work in the future. The Department of Mathematics at the University of Marne-la-Vallee contains a leading team on convex geometric analysis but also on deviation estimates in probability, optimal transortation, entropy growth and their relation to geometry. This makes it an ideal place of t he training needs of Paouris. This will hopefully secure his academic future but will also have a positive influence on the research community in Greece.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Mots‑clés

Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

FP6-2004-MOBILITY-5
Voir d’autres projets de cet appel

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

EIF - Marie Curie actions-Intra-European Fellowships

Coordinateur

UNIVERSITE DE MARNE-LA-VALLEE
Contribution de l’UE
Aucune donnée
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

Aucune donnée
Mon livret 0 0