Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

A Hybrid High Quality Translation System

Objective

Since roughly a decade statistical machine translation (SMT) predominates in academic research. However, most commercial MT suppliers continue to offer systems based on more traditional rule-based architectures (RBMT). Difficulties with replacing the translation engines in the product set-up may explain this discrepancy in part. However, the main reasons are that RBMT makes available a whole bunch of functions which SMT does not provide, including human-readable, fully worked out 'conventional' dictionaries, and that for a number of language pairs RBMT-quality is still higher.

SMT needs huge bilingual text corpora to compute satisfactory translation models, and it is inherently weak when dealing with rare data and non-local phenomena. Its advantages are low cost and robustness. The main disadvantages of RBMT are high cost and shortcomings with respect to resolving structural and lexical ambiguities.

We propose a hybrid architecture for high quality machine translation which combines the strengths of both approaches and minimizes their weaknesses: At the core is a rule-based MT system which provides morphology, declarative grammars, semantic categories, and small dictionaries, but which avoids all expensive kinds of intellectual knowledge acquisition. Instead of manually working out large dictionaries and compiling information on disambiguation preference, we suggest a novel corpus-based bootstrapping method for automatically expanding dictionaries, and for training the analytical performance and the choice of transfer alternatives.

As bilingual corpora with good literal translations are a sparse resource, we focus in particular on exploiting comparable monolingual corpora. We locate unknown words and expressions, and then use a statistically tuned analysis component in combination with similarity assumptions to identify relations across languages. This approach should make it possible to overcome the data acquisition bottleneck of conventional SMT.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2009-IAPP
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IAPP - Industry-Academia Partnerships and Pathways (IAPP)

Coordinator

UNIVERSITY OF LEEDS
EU contribution
€ 571 811,00
Address
WOODHOUSE LANE
LS2 9JT Leeds
United Kingdom

See on map

Region
Yorkshire and the Humber West Yorkshire Leeds
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (1)

My booklet 0 0