Skip to main content
European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary
Contenu archivé le 2024-06-18

ADVANCED NUMEREICAL STUDY OF FLAME ACCELERATION AND DETONATION IN VAPOUR CLOUD EXPLOSIONS

Objectif

The proposed research aims to tackle the extremely complex problem of flame acceleration, the conditions for transition from turbulent deflagration to detonation and detonation. These physical phenomena are highly multidisciplinary which involve fluid mechanics, combustion, shock dynamics and detonation. We will start with small scales for model development and validation. In such analysis advanced combustion models for flame acceleration will be coupled with detailed chemistry together with special measures to tackle the stiffness issues associated with the chemistry. On this basis, modelling techniques will be developed for large scale problems using simplified chemistry. The key objectives of the proposed research, which is tailored for the Fellow to transfer knowledge to the host and/or bring knowledge to Europe, are as follows: • To deliver a robust sub-model for predicting flame acceleration around obstacles on the basis of the coherent flame model which is a variant of the flame surface density approach; • To validate the above model with laboratory scale test data and DNS predictions; • To apply the above model to examine flame acceleration in vapour cloud explosions, and examine in particular the effect of repeated obstacles on flame acceleration and possible transition to detonation. • To implement a reaction model and combine it with fine tuned chemistry to predict vapour cloud detonation pressure and velocity. • To test and validate the model with large scale detonation test data. • To apply the above model to analyse some recent proprietary experimental data from industrial collaborators, previously published test results as well as historical accident scenarios in which there was strong possibility that large vapour cloud detonated. In particular the effect of cloud height and thickness on the development of overpressure and its decay will be examined. • To draw conclusions and guidelines from the research.

Appel à propositions

FP7-PEOPLE-2009-IIF
Voir d’autres projets de cet appel

Coordinateur

KINGSTON UNIVERSITY HIGHER EDUCATION CORPORATION
Contribution de l’UE
€ 240 289,60
Adresse
RIVER HOUSE HIGH STREET 53-57
KT1 1LQ Kingston Upon Thames
Royaume-Uni

Voir sur la carte

Région
London Outer London — South Merton
Type d’activité
Higher or Secondary Education Establishments
Contact administratif
Joanna Haigh (Ms.)
Liens
Coût total
Aucune donnée