Skip to main content
European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary
Contenu archivé le 2024-06-18

Resolving Galaxy formation: Small-scale Internal physics in the Cosmological context

Objectif

The formation of dark matter structures in our Universe can be explained by the standard cosmological model, but the populations of galaxies observed in the distant and nearby Universe pose major challenges to our understanding of galaxy formation. There is increasing recognition that the visible, baryonic part of galaxies does not passively follow the hierarchical build-up of dark halos. A large part of the baryons can be accreted from cold gas flows along the cosmic web. The evolution of galaxies could then be mostly driven by their internal evolution, in addition to interactions and mergers. Many scall-scale processes with major effects on galaxy evolution have been unveiled. They have, however, been studied mostly one by one, ignoring the large-scale cosmological environment. Conversely, cosmological models do not resolve the small-scale internal processes properly yet. This dramatically limits our understanding of galaxy formation. The project is to develop an multi-scale understanding of galaxy formation. We will build comprehensive numerical models of the small-scale gas physics and star formation processes in, and incorporate them in large-scale cosmological simulations. Taking benefit from the best forthcoming computing facilities, this will develop a new understanding of the role of internal physics and external processes in structuring galaxies. Theoretical predictions will be confronted to observations, preparing and using the next generation of instruments along the whole duration of the project. Owing to a uniquely comprehensive approach including physical processes at different scales and an original combination of theory, simulation and observation, a new understanding of the evolution of the baryons through cosmic times can emerge from the project.

Appel à propositions

ERC-2010-StG_20091028
Voir d’autres projets de cet appel

Régime de financement

ERC-SG - ERC Starting Grant

Institution d’accueil

COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
Contribution de l’UE
€ 988 400,00
Adresse
RUE LEBLANC 25
75015 PARIS 15
France

Voir sur la carte

Région
Ile-de-France Ile-de-France Paris
Type d’activité
Research Organisations
Contact administratif
Nathalie Judas (Ms.)
Chercheur principal
Frederic Bournaud (Dr.)
Liens
Coût total
Aucune donnée

Bénéficiaires (1)