Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-16

Exploring the Archaeology of Galaxies

Objective

An understanding of the way in which galaxies form and evolve remains an outstanding issue in astrophysics. Within the popular Lambda Cold Dark Matter model for structure formation, large galaxies, like our Milky Way, arise from the mergers of many smaller subsystems, as well as from the smooth accretion of intergalactic gas. Simulations of galaxy formation within a cosmological context are now able to make predictions about the structure and content of the major stellar components of galaxies but there remains a paucity of observational data against which to test them. Improving our knowledge of the archaeology of galaxies will be the primary aim of the Excellence Team.

The Team will pursue a multi-disciplinary approach combining state-of-the-art observational datasets with theoretical models in order to analyse and interpret the fossil record contained in our own Milky Way and up to 10 other nearby massive galaxies. The observations will be provided by wide-field imagers attached to the world's largest telescopes (the VLT/VIMOS and Subaru/Suprime-Cam) as well as by the new generation of large-area imaging surveys (WFCAM/UKIDSS, VISTA, SDSS), and will yield information about the spatial distribution, metallicities (including elemental abundances), kinematics and ages of long-lived stars. A particular focus of our work will be the study of stars in the far outer regions of these galaxies (e.g. stellar halos and outer thin/thick disks).

Theory predicts many of the most important clues about galaxy formation should lie buried in these parts yet they have traditionally been overlooked in observational studies due to their extreme faintness and the large areas on the sky, which they subtend. Specific topics to be addressed include - the structure and content of outer galactic disks, the physical origin of disk truncations, the frequency and nature of stellar substructure and the ubiquity, structure and composition of stellar halos and thick disks.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP6-2004-MOBILITY-8
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

EXT - Marie Curie actions-Grants for Excellent Teams

Coordinator

THE UNIVERSITY OF EDINBURGH
EU contribution
No data
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0