Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Stimulated Raman analysis and Raman microscopy with Fourier Domain Mode Locked (FDML) laser sources

Objective

Raman spectroscopy is one of the most specific non-destructive optical techniques to identify the chemical composition of a sample. Further, there is great hope that in the future it may be a powerful biomedical imaging technique for in vitro or in vivo microscopy, providing molecular contrast without exogenous contrast agents.

However, due to the small Raman cross-section, for many applications the acquisition is prohibitively slow. Techniques to solve this problem and to increase the Raman signal levels are coherent anti-Stokes Raman spectroscopy (CARS), surface enhanced Raman spectroscopy (SERS) and stimulated Raman spectroscopy (SRS). However, in many cases, they are currently not able to provide rapid, highly sensitive detection of an undistorted signal with a broad spectral coverage.

The aim of the project is to investigate Fourier domain mode locked (FDML) lasers for the application to stimulated Raman detection. A variety of physical effects, unique to FDML lasers, enables strategies to substantially increase the Raman signal level. This can provide access to highly sensitive Raman spectroscopy and high speed Raman microscopy. The techniques to increase the detection sensitivity include concepts like single- and double-resonant enhancement cavities, high power fibre amplification, dynamic spectral zooming, advanced modulation schemes and parallel designs.

The first part of the project addresses a comprehensive understanding of the underlying physical effects and how to increase the Raman signal by several orders of magnitude using these various strategies. The aim of the second part is to investigate, in how far these improved FDML based Raman systems can be applied to transient real time spectroscopy, analytical sensing, and Raman microscopy.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2010-StG_20091028
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-SG - ERC Starting Grant

Host institution

LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
EU contribution
€ 1 168 058,00
Address
GESCHWISTER SCHOLL PLATZ 1
80539 MUNCHEN
Germany

See on map

Region
Bayern Oberbayern München, Kreisfreie Stadt
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0