Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS
Contenido archivado el 2024-05-30

Exact Mining from In-Exact Data

Objetivo

Data exchange and data publishing is an inherent component of our interconnected world. Industrial companies outsource datasets to marketing and mining firms in order to support business intelligence; medical institutions exchange collected clinical experiments; academic institutions create repositories and share datasets for promoting research collaboration. A common denominator in any data exchange is the 'transformation' of the original data, which usually results in 'distortion' of data. While accurate and useful information can be potentially distilled from the original data, operations such as anonymization, rights protection and compression result in modified datasets that very seldom retain the mining capacity of its original source. This proposal seeks to address questions such as the following:

- How can we lossy compress datasets and still guarantee that mining operations are not distorted?
- Is it possible to right protect datasets and provide assurances that this task shall not impair our ability to distill useful knowledge?
- To what extent can we resolve data anonymization issues and yet retain the mining capacity of the original dataset?

We will examine a fundamental and hard problem in the area of knowledge discovery, which is the delicate balance between data transformation and data utility under mining operations. The problem lies at the confluence of many areas, such as machine and statistical learning, information theory, data representation and optimization. We will focus on studying data transformation methods (compression, anonymization, right protection) that guarantee the preservation of the salient dataset characteristics, such that data mining operations on original and transformed dataset are retained as well as possible. We will investigate how graph-centric approaches, clustering, classification and visualization algorithms can be ported to work under the proposed mining-preservation paradigm. Additional research challenges i

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..

Para utilizar esta función, debe iniciar sesión o registrarse

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

ERC-2010-StG_20091028
Consulte otros proyectos de esta convocatoria

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

ERC-SG - ERC Starting Grant

Institución de acogida

IBM RESEARCH GMBH
Aportación de la UE
€ 1 499 998,80
Dirección
SAEUMERSTRASSE 4
8803 RUESCHLIKON
Suiza

Ver en el mapa

Región
Schweiz/Suisse/Svizzera Nordwestschweiz Aargau
Tipo de actividad
Private for-profit entities (excluding Higher or Secondary Education Establishments)
Enlaces
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

Sin datos

Beneficiarios (1)

Mi folleto 0 0