Skip to main content
European Commission logo print header

Advanced Lagrangian Optimization, Receptivity and Sensitivity analysis applied to industrial situations

Objectif

In the last ten years there has been a surge of interest in non-modal analysis applied to canonical problems in fundamental fluid mechanics. Even in simple flows, the stability behaviour predicted by non-modal analysis can be completely different from and far more accurate than that predicted by conventional eigenvalue analysis.

As well as being more accurate, the tools of non-modal analysis, such as Lagrangian optimization, are very versatile. Furthermore, the outputs, such as receptivity and sensitivity maps of a flow, provide powerful insight for engineers. They describe where a flow is most receptive to forcing or where the flow is most sensitive to modification.

The application of non-modal analysis to canonical problems has set the scene for step changes in engineering practice in fluid mechanics and thermoacoustics. The technical objectives of this proposal are to apply non-modal analysis to high Reynolds number flows, reacting flows and thermoacoustic systems, to compare theoretical predictions with experimental measurements and to embed these techniques within an industrial design tool that has already been developed by the group.

This research group s vision is that future generations of engineering CFD tools will contain modules that can perform non-modal analysis. The generalized approach proposed here, combined with challenging scientific and engineering examples that are backed up by experimental evidence, will make this possible and demonstrate it to a wider engineering community.

Appel à propositions

ERC-2010-StG_20091028
Voir d’autres projets de cet appel

Régime de financement

ERC-SG - ERC Starting Grant

Institution d’accueil

THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Contribution de l’UE
€ 1 301 196,00
Adresse
TRINITY LANE THE OLD SCHOOLS
CB2 1TN Cambridge
Royaume-Uni

Voir sur la carte

Région
East of England East Anglia Cambridgeshire CC
Type d’activité
Higher or Secondary Education Establishments
Contact administratif
Renata Schaeffer (Ms.)
Chercheur principal
Matthew Pudan Juniper (Dr.)
Liens
Coût total
Aucune donnée

Bénéficiaires (1)