Objective
Discovery of ocean depths concerns every one of us. Recent developments of new technologies, of underwater robotic and of GPS are changing dramatically the way people perceive oceans, not anymore from their surfaces, but through their depths, not in immersion but on-line, not deferred but in real time. This is the objective of Digital Ocean. New technologies are now capable of challenging traditional scuba diving by creating an innovative form of diving, based on science and technology, not on bravery - virtual diving in real time. Navigating freely in the oceanic realm, a dream rooted on man’s origins, is now accessible to all. Smart autonomous robots are used to collect underwater digital data that generate sceneries of undersea in 3D interactive imagery. Then, these preprocessed background productions are merged, through mixed reality, with real time 2D videos taken by other distant underwater remote controlled robots teleoperated via the internet, and diffused on-line. As a result, through the web, anyone, anywhere, at any moment - with minimal costs and no risks, will be able to dive virtually in real time, in the most remarkable and secluded sites around the world, unconcerned by sea depths, and get an unmatched quality of images, discover a variety of details, experience the feelings of diving without its constraints and, above all, keeping undisturbed the environment Thus, virtual divers alone or in groups, will be able in few days to discover more than a real diver during all his lifetime. To further enhance virtual diving experience, are integrated in the system a serious video game, a wiki-editing and e-learning platforms, linked with marine specialists. Divers themselves will build their immersed world, keeping virtual sites mirroring real sites, continuously updated and improving in realism. With Digital Ocean, the discovery of the other two thirds of our planet’s immersed territories will become eventually and irreversibly reachable.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
- natural sciencescomputer and information sciencesinternet
- natural sciencesphysical sciencesastronomyplanetary sciencesplanets
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringroboticsautonomous robots
- natural sciencescomputer and information sciencessoftwaresoftware applicationsvirtual reality
- natural sciencescomputer and information sciencessoftwaresoftware applicationsvideo games
You need to log in or register to use this function
Topic(s)
Call for proposal
FP7-SME-2010-1
See other projects for this call
Funding Scheme
BSG-SME - Research for SMEsCoordinator
78630 MORAINVILLIERS
France