Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-30

Efficient CFD Multi-physics programming research

Objective

The current evolution in the aeronautical field towards high-fidelity simulations, including multi-physics and more reliable modeling of turbulence and transition, calls for a new approach of the complete CFD-multi-physics simulation chain, with a drastic reduction of its turnaround time.
This requires revising the whole CAE chain, from pre-processing (CAD handling and mesh generation), to very fast basic CFD algorithms and to efficient, full parallel post-processing, in order to achieve a reduction of the global turn-around time by several orders of magnitude.
On a shorter term, of 24 months of the current CfP project, the following objectives can be ensured, based on very recent developments performed at NUMECA Int.:
• A gain of one order of magnitude at the pre-processing level, covering automatic CAD cleaning, wrapping and parallel unstructured grid generation for arbitrary complex configurations with the software system HEXPRESS™/Hybrid.
• A gain of one order of magnitude, due to a novel convergence acceleration algorithm, allowing calculations with CFL=1000 and convergence of steady state RANS simulations, in 50 multigrid cycles.
The present proposal has as objective to respond to the CfP topic by
• extending these capabilities to the GRA-LNC configurations
• extending the convergence acceleration methodology to simulations with laminar-turbulent transition, and to unsteady flows
• providing guidelines for a next generation software environment for industrial aerodynamics simulation, in response to task 2 of the CfP,
• porting of the CFD code and the convergence acceleration algorithms to GPU’s, with an expected additional gain of 1 to 2 orders of magnitude.
One could therefore expect, combining the above mentioned efforts that within the framework of the project duration, a gain of 3-to 4 orders of magnitude will be achieved, in global CPU performance and turn-around time, for steady state RANS simulations in a first step.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

SP1-JTI-CS-2010-01
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

JTI-CS - Joint Technology Initiatives - Clean Sky

Coordinator

CADENCE DESIGN SYSTEMS BELGIUM
EU contribution
€ 67 500,00
Address
CHAUSSEE DE LA HULPE 187-189
1170 Bruxelles / Brussel
Belgium

See on map

Region
Région de Bruxelles-Capitale/Brussels Hoofdstedelijk Gewest Région de Bruxelles-Capitale/ Brussels Hoofdstedelijk Gewest Arr. de Bruxelles-Capitale/Arr. Brussel-Hoofdstad
Activity type
Private for-profit entities (excluding Higher or Secondary Education Establishments)
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (1)

My booklet 0 0