Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Advanced heating system and control mode for homogeneous high temperature curing of large composite repairs

Objective

The required elevation of temperature for curing of composite repairs is usually achieved by resistance heating blankets, controlled through spot temperature measurements. Although this method is simple and works adequately for small repairs, when larger areas are heated, cold or hot spots frequently occur, due to variable heat losses, caused by geometrical asymmetry etc. For this reason, autoclave curing of large repairs is currently used, as the most reliable curing methodology, which is however accompanied by high cost, wastes and energy consumption. The scope of this proposal is to enable the extension of heating blankets technology for the treatment of large repairs (e.g. reversers), currently requiring autoclave heating. A five step process is proposed:a)Thermal transfer simulation, to retrieve the “thermal signature” of the part and experimental validation using heat flux sensors,b)Manufacturing of thermal blankets, namely adapted Variable Heating Elements (VHE), with denser or coarser heating elements inside, and standard Compensation Heating Elements (CHE), in order to compensate for dissimilar heat losses,c)Development of universal Advanced Heating Control Unit (AHCU), with innovative programmable closed loop control,d)Development of a specialized High Power Supply Unit (HPSU,e)Process validation. It is expected that, this innovative methodology will allow the performance of structural repairs, either totally out-of-autoclave or in combination with autoclave treatment, as required, thus improving the overall heating process and achieving large scale economies compared to current autoclave solutions. Given that specified repairs are generally standardized, steps (a) and (b) will only need to be performed once per P/N to be repaired, while the developed equipment described in steps (c) and (d) will be totally reusable, thus significantly decreasing the non-recurring cost encountered per repair.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

SP1-JTI-CS-2010-03
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

JTI-CS - Joint Technology Initiatives - Clean Sky

Coordinator

GMI AERO
EU contribution
€ 129 000,00
Address
13 RUE GEORGES AURIC CAP 19
75019 Paris
France

See on map

Region
Ile-de-France Ile-de-France Paris
Activity type
Private for-profit entities (excluding Higher or Secondary Education Establishments)
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (1)

My booklet 0 0