Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Determining novel peptide sequence and matrix mechanical properties to increase osteogenesis in embryonic stem cells using designer alginate hydrogels for bone regeneration

Objective

Regenerating large bone defects is a great challenge in regenerative medicine. Embryonic stem cell (ESC) therapies are an attractive option due to their unlimited proliferation and ability to produce the cell types needed for bone repair. Here, we propose creating a three-dimensional alginate hydrogel that displays bioactive epitopes and has mechanical properties that induce osteogenic differentiation of ESCs and increase bone formation in vitro. We will do this by building upon previous research in the group of Prof Molly Stevens, which found that ESCs cultured on the extracellular matrix of bone forming osteoblasts increased both differentiation into osteogenic cells and bone formation. We propose using a proteomic approach to identify the proteins that are responsible for this effect. Once the proteins are known, they will be cut into short overlapping peptides that will be synthesized and attached to a cell culture surface. ESCs will then be grown on them to determine the sequences that induce osteogenesis. Using two-dimensional hydrogels of different stiffness that are coated with the osteogenic peptide, the mechanical properties that maximize osteogenesis will be determined. This peptide will then be coupled to alginate to form a hydrogel whose mechanical properties will be tailored to maximize bone formation. Novel sequences which induce osteogenesis are important to stem cell biology and an artificial matrix that differentiates ESCs into osteoblasts using both displayed ligands and stiffness would be important to regenerative medicine. The project Peptide Osteogel will be beneficial to Europe by bringing a scientist with a unique skill set into a top biomaterials lab to work on a multidisciplinary project that will increase the quality and status of science in the European Union. This fellowship will enable greater collaboration and transfer of knowledge across Europe, increasing the mobility and human potential of scientists across the continent.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2010-IIF
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IIF - International Incoming Fellowships (IIF)

Coordinator

IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
EU contribution
€ 201 049,60
Address
SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
SW7 2AZ London
United Kingdom

See on map

Region
London Inner London — West Westminster
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0