Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Visualizing the structural synaptic memory trace: presynaptic partners of newly formed spines

Objective

The formation and elimination of spine synapses can be visualized both in vitro as well as in vivo using advanced imaging techniques. It is known that the number of dendritic spines changes both during development as well as during the acquisition of new memories. However, up to now these observations are entirely correlative. It is unclear if the presynaptic neuron forming a functional contact on a newly formed spine indeed was the one that showed correlated activity with the postsynaptic cell as would be required for a learning mechanism following classical Hebbian plasticity. In fact, since it has never been shown what information is transmitted via a newly formed spine synapse in vivo, it has yet to be demonstrated that new long-term stable spines indeed could carry a memory trace related to a specific previous experience.
Here, I propose to functionally identify the presynaptic partners of newly formed spine synapses. I will assess if the information carried by a new spine can be predicted from readily observable global changes in neuronal activation strength in a well-defined sensory deprivation paradigm in vivo. Furthermore, I will study whether indeed neurons that ‘fire together’ also ‘wire together’ by forming new stable spine synapses in vitro.
I will develop chronic single spine Ca2+ imaging techniques and novel optophysiological tools like a dual-color genetically encoded Ca2+ indicator (GCaMP3-based) and an activity-dependent structural tag (TetTag-based) of active axons. I aim to functionally define the active presynaptic population in during visual and electrical stimulation in vivo and in vitro. Furthermore, I will assess if deletion of proteins involved in the functional maintenance of synaptic strengthening (LTP-maintenance) prevents the formation and/or stabilization of new synapses between defined coactive partners. This work will take our understanding of memory formation forward while providing a range of broadly applicable new techniques.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2010-IEF
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IEF - Intra-European Fellowships (IEF)

Coordinator

MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
EU contribution
€ 168 863,20
Address
HOFGARTENSTRASSE 8
80539 MUNCHEN
Germany

See on map

Region
Bayern Oberbayern München, Kreisfreie Stadt
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0