Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Electronic properties in the vicinity of a Mott insulator

Objective

"Metallic compounds with d- and f-wave electrons in their outer-shell tend to have narrow bandwidths, and their electronic properties can be strongly affected by competing Coulomb interactions. When the Coulomb repulsion is strong enough, the system may become a Mott insulator -- a state in which charge is localized due to the interactions. The study of Mott insulators, and of the mechanisms by which their insulating behavior is destroyed, can give us significant insight regarding nearby metallic and superconducting states.

In the first part of this proposal, I focus on the high-Tc superconducting cuprates. The parent compound in these materials is an antiferromagnetic Mott insulator, which becomes a superconductor upon doping. Doping also leads to spatial inhomogeneity at the nanostructure. I will study the effects of spatial inhomogeneity on the bulk electronic properties, as well its relationship to the superconducting temperature Tc.

In the second part of this proposal, I consider itinerant electron systems on geometrically-frustrated lattices. Geometric frustration helps suppress the formation of magnetic order, and can lead to ``spin-liquid"" states -- Mott insulators with no competing magnetic order. The need to understand spin-liquid states is made more pressing by the advent of newly developed insulators on geometrically-frustrated lattices. I will focus on two related systems:

a) Recent experiments on the hyperkagome compound Na4Ir3O8 demonstrate a pressure-tuned spin-liquid to metal transition in a three-dimensional system. I will study the nature of such a transition and also study the possible existence of a spin liquid phase with spinon pairing in this compound.

b) Motivated by experiments on FeSc2S4, I will study the effects of orbital degeneracy on the Kugel-Khomskii model on the diamond lattice, with the goal to understand the interplay between orbital degeneracy and geometrical frustration in stabilizing spin-liquid states."

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2010-RG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IRG - International Re-integration Grants (IRG)

Coordinator

TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
EU contribution
€ 100 000,00
Address
SENATE BUILDING TECHNION CITY
32000 Haifa
Israel

See on map

Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0