Objetivo
The proposal consists of an extensive research program to advance the understanding of singular integral operators of Harmonic Analysis in various situations on the borderline of the existing theory. This is to be achieved by a creative combination of techniques from Analysis and Probability. On top of the standard arsenal of modern Harmonic Analysis, the main probabilistic tools are the martingale transform inequalities of Burkholder, and random geometric constructions in the spirit of the random dyadic cubes introduced to Nonhomogeneous Analysis by Nazarov, Treil and Volberg.
The problems to be addressed fall under the following subtitles, with many interconnections and overlap: (i) sharp weighted inequalities; (ii) nonhomogeneous singular integrals on metric spaces; (iii) local Tb theorems with borderline assumptions; (iv) functional calculus of rough differential operators; and (v) vector-valued singular integrals.
Topic (i) is a part of Classical Analysis, where new methods have led to substantial recent progress, culminating in my solution in July 2010 of a celebrated problem on the linear dependence of the weighted operator norm on the Muckenhoupt norm of the weight. The proof should be extendible to several related questions, and the aim is to also address some outstanding open problems in the area.
Topics (ii) and (v) deal with extensions of the theory of singular integrals to functions with more general domain and range spaces, allowing them to be abstract metric and Banach spaces, respectively. In case (ii), I have recently been able to relax the requirements on the space compared to the established theories, opening a new research direction here. Topics (iii) and (iv) are concerned with weakening the assumptions on singular integrals in the usual Euclidean space, to allow certain applications in the theory of Partial Differential Equations. The goal is to maintain a close contact and exchange of ideas between such abstract and concrete questions.
Ámbito científico (EuroSciVoc)
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..
- ciencias naturales matemáticas matemáticas puras análisis matemático ecuaciones diferenciales ecuaciones diferenciales parciales
Para utilizar esta función, debe iniciar sesión o registrarse
Le pedimos disculpas, pero se ha producido un error inesperado durante la ejecución.
Necesita estar autentificado. Puede que su sesión haya finalizado.
Gracias por su comentario. En breve recibirá un correo electrónico para confirmar el envío. Si ha seleccionado que se le notifique sobre el estado del informe, también se le contactará cuando el estado del informe cambie.
Programa(s)
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
Tema(s)
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Convocatoria de propuestas
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
ERC-2011-StG_20101014
Consulte otros proyectos de esta convocatoria
Régimen de financiación
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
Institución de acogida
00014 HELSINGIN YLIOPISTO
Finlandia
Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.