Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Theoretical and Algorithmic Foundations for Future Proof Information and Inference Systems

Objective

A critical technological challenge for emerging information systems is to acquire, analyze and learn from the ever-increasing high-dimensional data produced by natural and man-made phenomena. Sampling, streaming, and recoding of even the most basic applications now produce a data deluge that severely stresses the available analog-to-digital converter, digital communication and storage resources, and easily swamps the back-end processing and learning systems.

Surprisingly, while the ambient data dimension is large in many problems, the relevant information therein typically resides in a much lower dimensional space. Viewed combinatorially and geometrically, natural constraints often cause data to cluster along low-dimensional structures, such as unions-of-subspaces or manifolds, having a few degrees of freedom relative to their size. This powerful notion suggests the potential for developing highly efficient methods for processing and learning by capturing and exploiting the inherent model, or data’s “information level.”

To this end, we seek to revolutionize scientific and practical modi operandi of data acquisition and learning by developing a new optimization and analysis framework based on the nascent low-dimensional models with broad applications—from inverse problems to analog-to-information conversion, and from automated representation learning to statistical regression. We attack the curse of dimensionality in specific ways, not only by relying on the blessing of dimensionality via concentration-of-measures, but also by exploiting geometric topologies and the diminishing returns (i.e. submodularity) within learning objectives. We believe only an approach such as ours can provide the theoretical scaffold for a future proof processing and learning framework that scales its operation to the problem’s information level, promising substantial reductions in hardware complexity, communication, storage, and computational resources.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2011-StG_20101014
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-SG - ERC Starting Grant

Host institution

ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
EU contribution
€ 1 824 220,00
Address
BATIMENT CE 3316 STATION 1
1015 Lausanne
Switzerland

See on map

Region
Schweiz/Suisse/Svizzera Région lémanique Vaud
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0