Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS
Contenido archivado el 2024-06-18

Theoretical and Algorithmic Foundations for Future Proof Information and Inference Systems

Objetivo

A critical technological challenge for emerging information systems is to acquire, analyze and learn from the ever-increasing high-dimensional data produced by natural and man-made phenomena. Sampling, streaming, and recoding of even the most basic applications now produce a data deluge that severely stresses the available analog-to-digital converter, digital communication and storage resources, and easily swamps the back-end processing and learning systems.

Surprisingly, while the ambient data dimension is large in many problems, the relevant information therein typically resides in a much lower dimensional space. Viewed combinatorially and geometrically, natural constraints often cause data to cluster along low-dimensional structures, such as unions-of-subspaces or manifolds, having a few degrees of freedom relative to their size. This powerful notion suggests the potential for developing highly efficient methods for processing and learning by capturing and exploiting the inherent model, or data’s “information level.”

To this end, we seek to revolutionize scientific and practical modi operandi of data acquisition and learning by developing a new optimization and analysis framework based on the nascent low-dimensional models with broad applications—from inverse problems to analog-to-information conversion, and from automated representation learning to statistical regression. We attack the curse of dimensionality in specific ways, not only by relying on the blessing of dimensionality via concentration-of-measures, but also by exploiting geometric topologies and the diminishing returns (i.e. submodularity) within learning objectives. We believe only an approach such as ours can provide the theoretical scaffold for a future proof processing and learning framework that scales its operation to the problem’s information level, promising substantial reductions in hardware complexity, communication, storage, and computational resources.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..

Para utilizar esta función, debe iniciar sesión o registrarse

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

ERC-2011-StG_20101014
Consulte otros proyectos de esta convocatoria

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

ERC-SG - ERC Starting Grant

Institución de acogida

ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Aportación de la UE
€ 1 824 220,00
Dirección
BATIMENT CE 3316 STATION 1
1015 LAUSANNE
Suiza

Ver en el mapa

Región
Schweiz/Suisse/Svizzera Région lémanique Vaud
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

Sin datos

Beneficiarios (1)

Mi folleto 0 0