Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS
Zawartość zarchiwizowana w dniu 2024-06-18

Theoretical and Algorithmic Foundations for Future Proof Information and Inference Systems

Cel

A critical technological challenge for emerging information systems is to acquire, analyze and learn from the ever-increasing high-dimensional data produced by natural and man-made phenomena. Sampling, streaming, and recoding of even the most basic applications now produce a data deluge that severely stresses the available analog-to-digital converter, digital communication and storage resources, and easily swamps the back-end processing and learning systems.

Surprisingly, while the ambient data dimension is large in many problems, the relevant information therein typically resides in a much lower dimensional space. Viewed combinatorially and geometrically, natural constraints often cause data to cluster along low-dimensional structures, such as unions-of-subspaces or manifolds, having a few degrees of freedom relative to their size. This powerful notion suggests the potential for developing highly efficient methods for processing and learning by capturing and exploiting the inherent model, or data’s “information level.”

To this end, we seek to revolutionize scientific and practical modi operandi of data acquisition and learning by developing a new optimization and analysis framework based on the nascent low-dimensional models with broad applications—from inverse problems to analog-to-information conversion, and from automated representation learning to statistical regression. We attack the curse of dimensionality in specific ways, not only by relying on the blessing of dimensionality via concentration-of-measures, but also by exploiting geometric topologies and the diminishing returns (i.e. submodularity) within learning objectives. We believe only an approach such as ours can provide the theoretical scaffold for a future proof processing and learning framework that scales its operation to the problem’s information level, promising substantial reductions in hardware complexity, communication, storage, and computational resources.

Dziedzina nauki (EuroSciVoc)

Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.

Aby użyć tej funkcji, musisz się zalogować lub zarejestrować

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

ERC-2011-StG_20101014
Zobacz inne projekty w ramach tego zaproszenia

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

ERC-SG - ERC Starting Grant

Instytucja przyjmująca

ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Wkład UE
€ 1 824 220,00
Adres
BATIMENT CE 3316 STATION 1
1015 LAUSANNE
Szwajcaria

Zobacz na mapie

Region
Schweiz/Suisse/Svizzera Région lémanique Vaud
Rodzaj działalności
Higher or Secondary Education Establishments
Linki
Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

Brak danych

Beneficjenci (1)

Moja broszura 0 0