Skip to main content

COLOR Ordering Templated by Hierarchized Supramolecular Porous FlatLANDS

Objective

The idea of this research project is to take advantage of molecular self-assembly to create a new generation of periodically-organized porous organic materials that, acting as specific molecular hosts, can structurally control the positioning of multiple functional guests on surfaces, opening new horizons toward the understanding and development of rationale protocols for the patterning of unprecedented materials. Taking advantage of a supramolecular approach to engineer extended mono- and two-dimensional organic networks, the ultimate aim of COLORLANDS is to create novel hosting frameworks accommodating in a predetermined fashion organic chromophores and/or fluorophores. For instance, these can be oligophenylenes as blue emitters, cumarines/oligophenylethylenes as green emitters, or perylenebisimides conjugates as red emitters. Depending on their spatial organization, such materials will be the springboard for further technological development in the fields of electroluminescent devices or artificial leafs mimicking natural light harvesting antenna systems. The self-assembly of selected rigid molecular modules alternatively functionalized with complementary connectors (PNA strands) will yield, under equilibrium conditions, one exclusive structural pattern. This will feature controllable (in shape, size and chemical nature) periodic receptor sites, each programmed to selectively accommodate a specific molecular chromophore and/or fluorophore. Particular attention will be given to the design and fundamental understanding of specific orthogonal interactions between the self-assembled receptor sites and the functional molecular guests. This will be achieved through the lateral organic functionalization of the PNA strands with novel orthogonal H-bonding-based recognition motifs. Depending on the ratio between the different receptors, one can tailor the desired emission or absorption colour, virtually enabling unlimited surfing through the color coordinate diagram.

Call for proposal

ERC-2011-StG_20101014
See other projects for this call

Funding Scheme

ERC-SG - ERC Starting Grant

Host institution

CARDIFF UNIVERSITY
Address
Newport Road 30-36
CF24 ODE Cardiff
United Kingdom
Activity type
Higher or Secondary Education Establishments
EU contribution
€ 392 601,06
Principal investigator
Davide Bonifazi (Prof.)
Administrative Contact
Eevi Laukkanen (Ms.)

Beneficiaries (2)

CARDIFF UNIVERSITY
United Kingdom
EU contribution
€ 392 601,06
Address
Newport Road 30-36
CF24 ODE Cardiff
Activity type
Higher or Secondary Education Establishments
Principal investigator
Davide Bonifazi (Prof.)
Administrative Contact
Eevi Laukkanen (Ms.)
UNIVERSITE DE NAMUR ASBL

Participation ended

Belgium
EU contribution
€ 902 798,94
Address
Rue De Bruxelles 61
5000 Namur
Activity type
Higher or Secondary Education Establishments
Administrative Contact
Christine Culot (Dr.)