Skip to main content
European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary
Contenu archivé le 2024-05-28

Yeast symbionts of malaria vectors: from basic research to the management of malaria control

Objectif

Advances in biotechnology propose innovative tools particularly relevant for public health application by genetic manipulation of microbial symbionts of arthropod vectoring disease. The symbiont engineering prevents the transmission of pathogens to human by interfering with their stage within the arthropod, thorough the expression of anti-pathogen effector molecules. This approach, defined paratransgenesis is simpler than the proposed engineering of the vector itself (transgenesis) and implies minor applicative and ethical concerns. Identification of good candidate for paratransgenesis has opened the way towards the investigation of microbes residing in the arthropod body, particularly those localised within the gut that often represents the locale in which pathogens transit or develop. Good paratransgenic candidates were already identified in the bug vectoring Chagas disease in South America and in the tse-tse fly vectoring sleeping sickness in Africa. As regard mosquitoes, responsible of tens of human infections including malaria, some interesting bacteria have been recognized as candidates for genetic manipulation, even if the ability of recombinant strains to cure mosquito has not been demonstrated yet in the field. Bacteria can be easily isolated, modified and reintroduced in the mosquito but secretion of antagonists by prokaryotic cell can represent a matter difficult to resolve. In this context endosymbiotic yeasts seem to be very appealing. Their genetic and cellular complexity makes yeasts as ideal tools for manipulation and bypasses many difficulties relative to the recombinant products releasing. On these bases, I have recently begun a study on the yeast microflora in mosquito. Particularly, I investigated the relationship between the yeast endosymbiont Pichia anomala and malaria vectors. Considering the special features of this yeast, I propose its use as paratransgenic tool for malaria control.

Appel à propositions

ERC-2011-StG_20101109
Voir d’autres projets de cet appel

Régime de financement

ERC-SG - ERC Starting Grant

Institution d’accueil

UNIVERSITA DEGLI STUDI DI CAMERINO
Contribution de l’UE
€ 1 500 000,00
Adresse
PIAZZA CAVOUR 19F
62032 Camerino
Italie

Voir sur la carte

Région
Centro (IT) Marche Macerata
Type d’activité
Higher or Secondary Education Establishments
Contact administratif
Simona De Simone (Ms.)
Chercheur principal
Irene Ricci (Dr.)
Liens
Coût total
Aucune donnée

Bénéficiaires (1)